文档图像识别技术回顾与展望  被引量:6

Document Image Recognition:Retrospective and Perspective of Technology

在线阅读下载全文

作  者:刘成林[1,2,3] Liu Chenglin(National Laboratory of Pattern Recognition,Institute of Automation,Chinese Academy of Sciences,Beijing 100190,China;School of Artificial Intelligence,University of Chinese Academy of Sciences,Beijing 100049,China;CAS Center for Excellence of Brain Science and Intelligence Technology,Beijing 100190,China)

机构地区:[1]中国科学院自动化研究所,模式识别国家重点实验室,北京100190 [2]中国科学院大学,人工智能学院,北京100049 [3]中国科学院脑科学与智能技术卓越创新中心,北京100190

出  处:《数据与计算发展前沿》2019年第2期17-25,共9页Frontiers of Data & Computing

基  金:国家自然科学基金(61721004)。

摘  要:【目的】文档图像是一类广泛存在且具有重要应用价值的数据。从文档图像中检测文字并转化为计算机内码(电子文本)是文档识别的主要目标。自上世纪50年代以来,文档识别(又称文字识别,OCR)的研究和应用取得了巨大的进展。本文为科研人员和工程人员提供一个比较全面的文档图像识别技术总体介绍,便于大家开展技术创新和技术应用。【方法】本文在介绍文档识别应用背景的基础上,对该领域历史上主要方法进行回顾,对当前技术状况和研究动态进行分析,并展望未来发展趋势。【结果】1950年代到2000年代,在统计模式识别、特征提取、结构分析、字符切分、字符串识别和版面分析等方面积累了大量有效方法。【结论】近年来深度学习(深度神经网络)逐渐成为主导性的方法,使文字检测和识别的性能得到明显提升,但在复杂版面分析能力、文字识别的可靠性、泛化性等方面仍然存在不足。[Objective]Document images carry important information of texts which are extensive in daily life.Extracting texts from images and converting to digital texts to be processed by computers is the main objective of document image recognition(also called as character recognition or OCR).Since 1950s,the field of document recognition has seen tremendous advances in research and applications.This paper provides an overview of document image recognition,facilitating research innovations and engineering applications.[Methods]In this article,I first introduce the applications needs of document recognition,then review the main advances of research in this field,analyze the strengths and weaknesses of the methods,and finally,prospect the future development.[Results]Numerous methods of statistical recognition,feature extraction,structural analysis,character segmentation,character string recognition and layout analysis were proposed during 1950s-2000s.[Conclusions]In recent years,deep learning methods(deep neural networks,DNNs)dominate the field,and have promoted the performance of text detection and recognition significantly.However,insufficiencies are still evident in complex layout analysis,character recognition reliability and generalization.

关 键 词:文档识别 版面分析 文本检测 深度学习 字符识别 文本行识别 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象