Town-scale microbial sewer community and H2S emissions response to common chemical and biological dosing treatments  被引量:2

Town-scale microbial sewer community and H2S emissions response to common chemical and biological dosing treatments

在线阅读下载全文

作  者:Elizabeth R.Mathews Jennifer L.Wood Dean Phillips Nathan Billington Dean Barnett Ashley E.Franks 

机构地区:[1]Department of Physiology,Anatomy and Microbiology,La Trobe University,Melbourne,Australia [2]Centre for Future Landscapes,La Trobe University,Melbourne,Australia [3]Faculty of Science,Engineering and Technology,Swinburne University of Technology,Melbourne,Australia [4]Western Water,Sunbury,Australia

出  处:《Journal of Environmental Sciences》2020年第1期133-148,共16页环境科学学报(英文版)

基  金:supported by an Australian Postgraduate Award at La Trobe University;additional financial support from industry collaborators Western Water

摘  要:Controlling hydrogen sulfide(H2S)odors and emissions using a single,effective treatment across a town-scale sewer network is a challenge faced by many water utilities.Implementation of a sewer diversion provided the opportunity to compare the effectiveness of magnesium hydroxide(Mg(OH)2)and two biological dosing compounds(Bioproducts A and B),with different modes of action(MOA),in a field-test across a large sewer network.Mg(OH)2 increases sewer p H allowing suppression of H2S release into the sewer environment while Bioproduct A acts to disrupt microbial communication through quorum sensing(QS),reducing biofilm integrity.Bioproduct B reduces H2S odors by scouring the sewer of fats,oils and grease(FOGs),which provide adhesion points for the microbial biofilm.Results revealed that only Mg(OH)2 altered the microbial community structure and reduced H2S emissions in a live sewer system,whilst Bioproducts A and B did not reduce H2S emissions or have an observable effect on the composition of the microbial community at the dosed site.Study results recommend in situ testing of dosing treatments before implementation across an operational system.Controlling hydrogen sulfide(H2S) odors and emissions using a single,effective treatment across a town-scale sewer network is a challenge faced by many water utilities.Implementation of a sewer diversion provided the opportunity to compare the effectiveness of magnesium hydroxide(Mg(OH)2) and two biological dosing compounds(Bioproducts A and B),with different modes of action(MOA),in a field-test across a large sewer network.Mg(OH)2 increases sewer p H allowing suppression of H2S release into the sewer environment while Bioproduct A acts to disrupt microbial communication through quorum sensing(QS),reducing biofilm integrity.Bioproduct B reduces H2S odors by scouring the sewer of fats,oils and grease(FOGs),which provide adhesion points for the microbial biofilm.Results revealed that only Mg(OH)2 altered the microbial community structure and reduced H2S emissions in a live sewer system,whilst Bioproducts A and B did not reduce H2S emissions or have an observable effect on the composition of the microbial community at the dosed site.Study results recommend in situ testing of dosing treatments before implementation across an operational system.

关 键 词:Microbially induced concrete corrosion Biological dosing treatments Magnesium hydroxide Hydrogen sulfide Sulfate-reducing bacteria Microbial ecology 

分 类 号:X703[环境科学与工程—环境工程] X172

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象