检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:莫建麟 MO Jian-lin(A BA Teachers University,Aba prefecture 623002,China)
出 处:《中国电子科学研究院学报》2019年第12期1276-1280,共5页Journal of China Academy of Electronics and Information Technology
基 金:阿坝州应用技术研究与开发资金项目(19YYJSYJOO35);阿坝师范学院专项培育项目(ASZ18-02)。
摘 要:基于无线传感网络的物联网应用要求低复杂度的定位技术。而基于接收信号强度(Received Signal Strength Indicator,RSSI)测距算法简单,易实施。然而,RSSI测距存在噪声,定位精度不高。为此,提出基于维纳滤波的RSSI定位算法(Wiener Filter-based RSSI Localization,WFRL)o从LoRa物理层不同的传输模式获取多个RSSI值,再推导关于RSSI值的距离对数关系式。并利用维纳滤波处理RSSI数据,得到最优的权重系数,进而提高定位精度。仿真结果表明.WFRL算法有效提高了LoRa系统内的定位精度。Modem wireless sensor networks(WSNs)for Internet of Things(IoT)applications require low-complexity algorithms for positioning,Thus,simple received signal strength indicator(RSSI)based ranging techniques is simple and easy to implement.However,interactions of the RSSI with a real-world environment are difficult to predict and often lead to significant errors in the localization process.There-fore,Wiener Filter-based RSSI Localization algorithm(WFRL)is proposed in this paper.Multiple RSSI values are obtained from different LoRa physical layer transport modes,and then the distance logarithmic relationship of RSSI value is deduced.Wiener filter is used to process RSSI data,and the optimal weight coefficient is obtained.Simulation results show that WFRL algorithm can effectively improve the positio-ning accuracy of LoRa system.
关 键 词:LoRa网络 定位 测距 接收信号强度 维纳滤波
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49