基于MATLAB的分段型模拟信息转换器仿真研究  被引量:1

Research on Piecewise Analog to Information Converter Based on MATLAB Simulation

在线阅读下载全文

作  者:王晓波 蒋铁珍[1] WANG Xiao-bo;JIANG Tie-zhen(Anhui University,Hefei 230601,China)

机构地区:[1]安徽大学,安徽合肥230601

出  处:《中国电子科学研究院学报》2019年第12期1304-1310,共7页Journal of China Academy of Electronics and Information Technology

基  金:安徽省自然科学基金(1608085MF135)。

摘  要:多输入多输出(Multiple-Input Multiple-Output,MIM0)雷达在对空中机动目标识别和多目标跟踪中,其大孔径合成所产生的海量数据使系统内的传统模-数转换器(Analog-to-Digital Converter,ADC)在信号处理中倍受挑战。为代替传统ADC以解决传统采样理论在信号处理中的压力,本文以模拟信息转换器(Analog-to-Information Converter,AIC)为研究对象,根据压缩感知理论(Compressed Sensing,CS),构建了一种分段型AIC结构,通过MATLAB/Simulink对其进行系统建模和仿真研究。该系统由伪随机序列模块、乘法器、积分模块和ADC模块组成,仿真所得稀疏信号利用正交匹配追踪(Orthogonal Matching Pursuit,0MP)完成对原始信号的重构。实验结果表明,该系统可以对原始信号低速率采样和高概率重构,体现了该分段型AIC系统的可行性。When a Multiple-Input Multiple-Output(MIMO)radar recognizes maneuvering targets and tracks multiple targets in the air,the massive data generated by its large-aperture synthesis enables traditional Analog-to-Digital Converter(ADC)in the system has great challenges in signal processing.In order to replace the traditional ADC to solve the pressure of traditional sampling theory in signal processing,this paper took analog-to-information converter(AIC)as the research object and constructed a kind of structure of piecewise AIC based on Compressed Sensing(CS)theory.And the system modeling and simulation were researched through MATLAB/Simulink.This system consisted of pseudo-random sequence modules,multipliers,integration modules and an ADC module.Then the original signal can be reconstructed by Orthogonal Matching Pursuit(OMP)from the simulating sparse signal.The experimental results show that this system can achieve the low-rate sample and high-probability reconstruction of the original signal.These results embody the feasibility of the piecewise AIC system.

关 键 词:压缩感知 分段型模拟信息转换器 正交匹配追踪 

分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象