检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:罗迎[1,2,3] 倪嘉成 张群[1,2,3] LUO Ying;NI Jiacheng;ZHANG Qun(College of Information and Navigation,Air Force Engineering University,Xi’an 710077,China;Collaborative Innovation Center of Information Sensing and Understanding,Xi’an 710077,China;The Key Laboratory for Information Science of Electromagnetic Waves(Ministry of Education),Fudan University,Shanghai 200433,China)
机构地区:[1]空军工程大学信息与导航学院,西安710077 [2]信息感知技术协同创新中心,西安710077 [3]复旦大学电磁波信息科学教育部重点实验室,上海200433
出 处:《雷达学报(中英文)》2020年第1期107-122,共16页Journal of Radars
基 金:国家自然科学基金(61631019,61971434)~~
摘 要:对感兴趣目标的数量、位置、型号等参数信息的精确获取一直是合成孔径雷达(SAR)技术中最为重要的研究内容之一。现阶段的SAR信息处理主要分为成像和解译两大部分,两者的研究相对独立。SAR成像和解译各自开发了大量算法,复杂度越来越高,但SAR解译并未因成像分辨率提升而变得简单,特别是对重点目标识别率低的问题并未从本质上得以解决。针对上述问题,该文从SAR成像解译一体化角度出发,尝试利用“数据驱动+智能学习”的方法提升机载SAR的信息处理能力。首先分析了基于“数据驱动+智能学习”方法的SAR成像解译一体化的可行性及现阶段存在的主要问题;在此基础上,提出一种“数据驱动+智能学习”的SAR学习成像方法,给出了学习成像框架、网络参数选取方法、网络训练方法和初步的仿真结果,并分析了需要解决的关键性技术问题。One of the most important research fields in Synthetic Aperture Radar(SAR)technology is to improve the accuracies of the number,location,classification,and other parameters of targets of interest.SAR information processing can be mainly divided into two tasks:imaging and interpretation.At present,research efforts on these two tasks are relatively independent.Many algorithms have been developed for SAR imaging and interpretation,and they have become increasingly complex.However,SAR interpretation has not been made simpler by improvements in the imaging resolution.The low recognition rate of key targets,in particular,has yet to be adequately resolved.In this paper,we use a“data driven+intelligence learning”method to improve the information processing ability of airborne SAR based on SAR imaging&interpretation integration.First,we analyze the feasibility and main problems of SAR imaging&interpretation integration using a“data driven+intelligence learning”method.Based on the results,we propose a SAR learning-imaging method based on“data driven+intelligence learning”with the goal of producing an imaging network.The proposed learning-imaging framework,parameter selection method,network training method,and preliminary simulation results are presented,and the key technical problems to be solved are identified and analyzed.
关 键 词:合成孔径雷达(SAR) SAR成像解译一体化 SAR学习成像 数据驱动 深度学习
分 类 号:TN957.5[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13