检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:WANG Naian SUN Xiaojin HUANG Diangui
机构地区:[1]School of Energy and Power Engineering, University of Shanghai for Science and technology
出 处:《Journal of Thermal Science》2020年第1期32-42,共11页热科学学报(英文版)
基 金:supported by National Natural Science Foundation of China (Grant No. 51536006);supported by Shanghai Science and Technology Committee with Grant No.17060502300
摘 要:The recovery of low temperature heat sources is a hot topic in the world.The ORC system can effectively use the low temperature heat source.As its main output device,the performance of the turbine is very important.The single stage transonic turbine has the characteristics of small size and large output power.In this paper,the complete design process of a transonic centrifugal turbine with R245fa in low working temperature condition is introduced.At the design conditions,the shaft power and the wheel efficiency of the centrifugal turbine can reach 1.12 MW and 83.61%,respectively.In addition,a thermodynamic ORC cycle is presented and the off-design conditions of the turbine and its influence on the system are studied in detail.The results obtained in the present work show that the single-stage transonic centrifugal turbine can be regarded as a potential choice to be applied in small scale ORC systems.The recovery of low temperature heat sources is a hot topic in the world. The ORC system can effectively use the low temperature heat source. As its main output device, the performance of the turbine is very important. The single stage transonic turbine has the characteristics of small size and large output power. In this paper, the complete design process of a transonic centrifugal turbine with R245 fa in low working temperature condition is introduced. At the design conditions, the shaft power and the wheel efficiency of the centrifugal turbine can reach 1.12 MW and 83.61%, respectively. In addition, a thermodynamic ORC cycle is presented and the off-design conditions of the turbine and its influence on the system are studied in detail. The results obtained in the present work show that the single-stage transonic centrifugal turbine can be regarded as a potential choice to be applied in small scale ORC systems.
关 键 词:ORC transonic centrifugal turbine design and off-design operating conditions performance analysis computational fluid dynamics
分 类 号:TK115[动力工程及工程热物理—热能工程] TK730.2[交通运输工程—轮机工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.146.86