基于旅游领域本体的语义检索模型  被引量:4

Semantic Retrieval Model Based on Tourism Domain Ontology

在线阅读下载全文

作  者:张婷 段跃兴 张月琴 ZHANG Ting;DUAN Yuexing;ZHANG Yueqin(College of Information and Computer Science, Taiyuan University of Technology, Taiyuan 030024, China)

机构地区:[1]太原理工大学信息与计算机学院

出  处:《太原理工大学学报》2020年第2期220-225,共6页Journal of Taiyuan University of Technology

基  金:山西省自然科学基金应用基础研究项目(201701D121057)

摘  要:传统的关键字搜索方法缺乏对搜索内容在语义上的处理,搜索出的结果可能会出现不全面、不准确的问题,从而导致搜索结果无法达到用户的要求。为了提高检索的质量,在构建旅游领域本体的基础上,利用检索模块对检索预处理过程中所筛选出的查询条件进行语义层面上的分析,采用语义相似度计算方法对检索关键词进行语义上的扩展分析,结合Jena推理机制与旅游领域内所包含的实际信息的各种属性关系制定出符合该领域的推理规则集合,通过查询条件筛选出符合条件的推理规则并与已建立好的数据资源库进行语义推理查询,最终提出了基于旅游领域本体的语义检索模型。由实验结果可以看出,该模型可以补足传统搜索方法中所存在的缺点,使得结果具有更高的准确度。Traditional keyword search method lacks the semantic processing of search content,and the search results may appear incomplete and inaccurate,unable to meet user’s requirements.In order to improve the quality of retrieval,on the basis of the construction of tourism domain ontology,the retrieval module was used to analyze the search conditions selected in the process of retrieval preprocessing at semantic level,and the semantic similarity calculation method was used to expand the semantic analysis of search keywords,combining Jena reasoning mechanism and tourism domain.The reasoning rules suited to this field were formulated according to the various attribute relations of the actual information contained in it.The qualified reasoning rules were screened out through the query conditions,and the semantic reasoning query was carried out with the established database of data resources.A semantic retrieval model based on tourism domain ontology was proposed.From the experiments,it can be seen that the model can make up for the shortcomings of traditional search methods and make the results more accurate.

关 键 词:旅游 本体 Jena推理规则 语义相似度 语义检索 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象