基于改进遗传算法的托盘拣选延误时间优化  被引量:7

Tardiness minimization of picking pallets based on improved genetic algorithm

在线阅读下载全文

作  者:李敬花[1] 曹旺 赵定刚 蒋岩 周青骅 LI Jinghua;CAO Wang;ZHAO Dinggang;JIANG Yan;ZHOU Qinghua(College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China;Shanghai Waigaoqiao Shipbuilding Co., Ltd., Shanghai 200137, China;School of Economics and Management, Harbin Engineering University, Harbin 150001, China)

机构地区:[1]哈尔滨工程大学船舶工程学院,黑龙江哈尔滨150001 [2]上海外高桥造船有限公司生产管理部,上海200137 [3]哈尔滨工程大学经济管理学院,黑龙江哈尔滨150001

出  处:《计算机集成制造系统》2020年第2期340-355,共16页Computer Integrated Manufacturing Systems

基  金:国家自然科学基金面上资助项目(51679059);工信部高技术船舶科研资助项目([2019]331)~~

摘  要:针对船企集配中心舾装件托盘拣选延误时间过长的问题,分析在多拣选人员条件下舾装件托盘的分批、指派及排序流程,提出基于改进遗传算法的舾装件托盘智能拣选方法。研究建立以总延误时间为优化目标的数学模型,并设计改进遗传算法求解模型。算法采用基于托盘的单层整数编码方式,通过用各染色体代表不同的托盘排序序列,在选择、交叉和变异操作后引入进化逆转和插入操作,来提高算法的整体优化效率。通过实例对比分析验证了该算法的有效性。To solve the tardiness problem of picking outfitting pallets in the collection and distribution center,an outfitting pallet picking intelligent method based on Improved Genetic Algorithm(IGA)was proposed after analyzing the workflow of Outfitting Pallets Batching,Assigning and Sequencing(OPBAS).By taking the total tardiness as its optimization goal,a mathematical model was introduced.The correspondent IGA was designed,inside which a pallet-based single-layer integer coding method was used and each chromosome represented a different pallet sequence.Besides,the evolutionary reversal operation and the insertion operation were introduced in addition to the traditional operations of selection,crossover and mutation,which could greatly improve the overall optimization efficiency of algorithm.Through the comparative analysis of cases,the proposed algorithm proved to be effective in minimizing the outfitting pallet picking tardiness.

关 键 词:船舶建造 改进遗传算法 舾装件托盘 延误时间 托盘分批指派排序 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象