兴趣和编码感知机会网络多源多宿数据分发  

Interest-and coding-aware multi-source and multi-destination data dissemination for opportunistic networks

在线阅读下载全文

作  者:姚建盛 刘艳玲 YAO Jiansheng;LIU Yanling(College of Tourism&Landscaper Architecture,Guilin University of Technology,Guilin,Guangxi 541004,China)

机构地区:[1]桂林理工大学旅游与风景园林学院

出  处:《河北科技大学学报》2020年第1期31-39,共9页Journal of Hebei University of Science and Technology

基  金:国家社会科学基金(18XMZ069);广西中青年教师基础能力提升项目(2019KY0292);桂林市科学研究与技术开发项目(20180102-2);桂林理工大学博士科研启动基金(GUTQDJJ2017141)

摘  要:针对当前机会网络数据分发协议面向的主要是单源多宿数据分发模型的问题,提出了一种多源多宿机会网络数据分发模型,设计了一种兴趣和编码感知(ICA,interest-and coding-aware)的机会网络数据分发协议。首先,由中继节点将满足同一兴趣的不同数据源进行流间随机线性网络编码后转发;其次,拥有相同兴趣的节点彼此交换兴趣编码数据,当节点收到足够多的满足同一兴趣的线性无关编码包时,解码得到多个感兴趣的原始数据;最后,对多源多宿机会网络数据分发进行了ONE仿真。结果表明,和基于ER的多源多宿数据分发相比,ICA能通过较小的缓存、网络带宽和网络负载获得较低的分发时延。研究结果可为机会网络中的网络数据分发机制提供一种可行、高效的解决方案。Aiming at the currently problem that data dissemination protocols in opportunistic networks are mainly based on single-source and multi-destination model,a multi-source and multi-destination data dissemination model for opportunistic networks is proposed,and an interest-and coding-aware(ICA)data dissemination protocol is designed.First,relays encode the different data flows which satisfy the same interest via inter-flow random linear network coding and then forward them.Second,nodes sharing the same interest exchange their interest coding data with each other.Once receiving enough independent coding packets which satisfy the same interest,the nodes decode the coding packets and obtain the original interest data.At last,ONE simulation is conducted for the multi-source and multi-destination data dissemination.The result shows that compared with the data dissemination protocol based on ER,ICA can obtain lower delay while consuming fewer buffers,less network bandwidth and network cost.The research result provides a feasible and efficient solution for opportunistic networks data dissemination mechanism.

关 键 词:计算机网络 机会网络 多源多宿数据分发 流间随机线性网络编码 兴趣 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象