检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马金锋[1] 唐力 饶凯锋 洪纲 马梅[1,4] MA Jinfeng;TANG Li;RAO Kaifeng;HONG Gang;MA Mei(Key Laboratory of Drinking Water Science and Technology,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences,Beijing 100085,China;Shenzhen Environment Monitoring Center,Shenzhen 518057,China;Shijiazhuang Environmental Information Center,Shijiazhuang 050051,China;College of Resources and Environment University of Chinese Academy of Sciences,Beijing 100190,China)
机构地区:[1]中国科学院饮用水科学与技术重点实验室(中国科学院生态环境研究中心),北京100085 [2]深圳市环境监测中心站,广东深圳518057 [3]石家庄市环境信息中心,河北石家庄050051 [4]中国科学院大学资源与环境学院,北京100190
出 处:《大数据》2019年第6期73-84,共12页Big Data Research
基 金:国家自然科学基金资助项目(No.51209194);中国科学院前沿科学重点研究计划项目(No.QYZDY-SSW-DQC004);广东省省级科技计划基金资助项目(NO.2016B02024007)~~
摘 要:水环境数值模型是模拟、分析及预测水体中物质迁移转化过程及其效应的有效工具。水环境模型的高性能批量计算是当前水环境模拟研究的热点。大数据技术中的分布式集群计算模式为水环境模拟批量计算提供一种可行的解决方案。探索了水环境数值模型在大数据分布式计算框架下的适应性,提出了一种适用于水环境模拟的大数据分布式集群运算模式,并通过实例验证了该运算模式的可行性。Water environment numerical models are effective tools for the simulation,analysis and prediction of the processes of pollutant transport and transformation in water.The development of high-performance batch computation of water environment models has long been a hot topic.The distributed cluster computing mode based on big data technology is a promising approach for massive data management and batch computation,which provides a viable solution to large-scale water environment simulations.The adaptability of water environmental models under the framework of big data technology was explored,and a distributed cluster computing mode for water environment simulations was proposed.Moreover,the feasibility of adapting Delft3D model for cluster computing under Hadoop MapReduce environment was verified with real examples.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49