检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:耿晓路 童小娇 GENG Xiaolu;TONG Xiaojiao(Department of Mathematics,Xiangtan University,Xiangtan 411105,Hunan,China;Department of Mathematics,Hunan First Normal Univer-sity,Changsha 410205,China)
机构地区:[1]湘潭大学数学系,湖南湘潭411105 [2]湖南第一师范学院数学系,长沙410205
出 处:《运筹学学报》2020年第1期115-130,共16页Operations Research Transactions
基 金:国家自然科学基金(Nos.11671125,71371065)
摘 要:机会约束作为求解随机优化问题的重要方法之一,在金融、工程、管理等领域均有着广泛的应用.随着实际问题呈现越来越复杂的不确定性状态,随机变量分布的准确信息难以预测,分布鲁棒机会约束作为有效求解随机变量信息模糊(不完备)下的随机优化问题被提出.近几年,研究者们不断提出分布鲁棒机会约束新的模型理论和算法.现总结了求解不同类型分布鲁棒机会约束问题的建模、模型求解、算法及应用的新进展.As one of the most important models in stochastic problem,the chance constrained optimization problem has been widely used in the fields of finance,engineering,management and so on.As the practical problems become more and more complex,the probability distribution of the uncertainty is difficult to predict/estimate accurately.Distributionally robust chance constrained optimization problem,as an effective model with ambiguous distributional information about uncertainty,has been proposed in the literature.In recent years,researchers have constantly developed new models for distributionally robust chance constrained optimization problems.The main purpose of this paper is to review recent advances in emerging models for distributionally robust chance constrained optimization problems and their potential applications in practice.
分 类 号:O224[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229