基于流量工程的软件定义网络控制资源优化机制  被引量:7

Control Resource Optimization Mechanism of SDN Based on Traffic Engineering

在线阅读下载全文

作  者:胡宇翔[1] 李子勇 胡宗魁 胡涛[1] HU Yuxiang;LI Ziyong;HU Zongkui;HU Tao(National Digital Switching System Engineering&Technology Research Center,Zhengzhou 450002,China;Unit 91445 of PLA,Dalian 116043,China)

机构地区:[1]国家数字交换系统工程技术研究中心,郑州450002 [2]中国人民解放军第91445部队,大连116043

出  处:《电子与信息学报》2020年第3期661-668,共8页Journal of Electronics & Information Technology

基  金:国家自然科学基金(61521003,61872382);国家重点研发计划(2017YFB0803204);广东省重点领域研发计划(2018B010113001)~~

摘  要:针对软件定义网络(SDN)分布式控制平面中由于网络分域管理所引发的控制扩张问题,该文提出了一种基于流量工程的SDN控制资源优化(TERO)机制。首先基于数据流的路径特征对流请求的控制资源消耗进行分析,指出通过调整控制器和交换机的关联关系可以降低控制资源消耗。然后将控制器关联过程分为两个阶段:先设计了最小集合覆盖算法来快速求解大规模网络中控制器关联问题;在此基础上,引入联合博弈策略来优化控制器和交换机的关联关系以减少控制资源消耗和控制流量开销。仿真结果表明,与现有的控制器和交换机就近关联机制相比,该文机制能在保证较低控制流量开销的前提下,节省约28%的控制资源消耗。In Software-Defined Networking(SDN) with distributed control plane, network expansion problems arise due to network domain management. To address this issue, a Traffic Engineering-based control Resource Optimization(TERO) mechanism of SDN is proposed. It analyzes the control resource consumption of flow requests processing with different path characteristics, and points out that the control resource consumption can be reduced by changing the association relationship between controllers and switches. The controller association mechanism is divided into two phases: firstly, a minimum set cover algorithm is designed to solve the controller association problem efficiently in large-scale network. Then, a coalitional game strategy is introduced to optimize the controller association relationship to reduce both control resource consumption and control traffic overhead. The simulation results demonstrate that while keeping control traffic overhead low,mechanism which in this paper can reduce control resource consumption by about 28% in comparison with the controller proximity mechanism.

关 键 词:软件定义网络 资源优化 控制器关联 分布式控制平面 

分 类 号:TN919.2[电子电信—通信与信息系统] TP393.2[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象