A ROBUST DISCRETIZATION OF THE REISSNER-MINDLIN PLATE WITH ARBITRARY POLYNOMIAL DEGREE  

在线阅读下载全文

作  者:Dietmar Gallistl Mira Schedensack 

机构地区:[1]Friedrich-Schiller-Universitdt Jena,07737 Jena,Germany [2]Universitat Leipzig,PF 100920,04009 Leipzig,Germany

出  处:《Journal of Computational Mathematics》2020年第1期1-13,共13页计算数学(英文)

摘  要:A numerical scheme for the Reissner-Mindlin plate model is proposed.The method is based on a discrete Helmholtz decomposition and can be viewed as a generalization of the nonconforming finite element scheme of Arnold and Falk[SIAM J.Numer.Anal.,26(6):1276-1290,1989].The two unknowns in the discrete formulation are the in-plane rotations and the gradient of the vertical displacement.The decomposition of the discrete shear variable leads to equivalence with the usual Stokes system with penalty term plus two Poisson equations and the proposed method is equivalent to a stabilized discretization of the Stokes system that generalizes the Mini element.The method is proved to satisfy a best-approximation result which is robust with respect to the thickness parameter t.

关 键 词:Reissner-Mindlin plate Nonconforming finite element Discrete Helmholtz decomposition ROBUSTNESS 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象