THE QUADRATIC SPECHT TRIANGLE  被引量:2

在线阅读下载全文

作  者:Hongliang Li Pingbing Ming Zhongci Shi 

机构地区:[1]Department of Mathematics,Sichuan Normal University,Chengdu 610066,China [2]The State Key Laboratory of Scientific and Engineering Computing,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,No.55,East Road ZhongGuanCun,Beijing 100190,China

出  处:《Journal of Computational Mathematics》2020年第1期103-124,共22页计算数学(英文)

基  金:The work of Li was supported by Science Challenge Project,No.TZ2016003;The work of Ming was partially supported by the National Natural Science Foundation of China for Distinguished Young Scholars 11425106;National Natural Science Foundation of China grants 91630313;by the support of CAS NCMIS;The work of Shi was partially supported by the National Natural Science Foundation of China grant 11371359.

摘  要:We propose a class of 12 degrees of freedom triangular plate bending elements with quadratic rate of convergence.They may be viewed as the second order Specht triangle,while the Specht triangle is one of the best first order plate bending element.The convergence result is proved under minimal smoothness assumption on the solution.Numerical results for both the smooth solution and nonsmmoth solution confirm the theoretical prediction.

关 键 词:Specht triangle Plate bending element Basis functions 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象