L^p-gradient estimates for the commutators of the Kato square roots of second-order elliptic operators on R^n  

L^p-gradient estimates for the commutators of the Kato square roots of second-order elliptic operators on R^n

在线阅读下载全文

作  者:Wenyu Tao Yanping Chen Yayuan Xiao Liwei Wang 

机构地区:[1]School of Mathematics and Physics,University of Science and Technology Beijing,Beijing 100083,China [2]Department of Mathematical Sciences,Ball State University,Muncie,IN 47306,USA [3]School of Mathematics and Physics,Anhui Polytechnic University,Wuhu 241000,China

出  处:《Science China Mathematics》2020年第3期575-594,共20页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China (Grant No. 11471033);Program for New Century Excellent Talents in University of China (Grant No. NCET-11-0574);the Fundamental Research Funds for the Central Universities (Grant No. FRF-BR-17-001B);the Fundamental Research Funds for Doctoral Candidate of University of Science and Technology Beijing (Grant No. FRF-BR-17018)

摘  要:Let L=-div(A▽) be a second-order divergent-form elliptic operator,where A is an accretive n×n matrix with bounded and measurable complex coefficients on Herein,we prove that the commutator [b,L1/2]of the Kato square root L1/2 and b with ▽b∈Ln(Rn)(n> 2),is bounded from the homogenous Sobolev space L1p(Rn) to Lp(Rn)(p-(L) <p<p+(L)).Let L=-div(A▽) be a second-order divergent-form elliptic operator,where A is an accretive n×n matrix with bounded and measurable complex coefficients on Herein,we prove that the commutator [b,L1/2]of the Kato square root L1/2 and b with ▽b∈Ln(Rn)(n> 2),is bounded from the homogenous Sobolev space L1p(Rn) to Lp(Rn)(p-(L)

关 键 词:COMMUTATOR Kato square root elliptic operators Sobolev space 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象