检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Wenyu Tao Yanping Chen Yayuan Xiao Liwei Wang
机构地区:[1]School of Mathematics and Physics,University of Science and Technology Beijing,Beijing 100083,China [2]Department of Mathematical Sciences,Ball State University,Muncie,IN 47306,USA [3]School of Mathematics and Physics,Anhui Polytechnic University,Wuhu 241000,China
出 处:《Science China Mathematics》2020年第3期575-594,共20页中国科学:数学(英文版)
基 金:supported by National Natural Science Foundation of China (Grant No. 11471033);Program for New Century Excellent Talents in University of China (Grant No. NCET-11-0574);the Fundamental Research Funds for the Central Universities (Grant No. FRF-BR-17-001B);the Fundamental Research Funds for Doctoral Candidate of University of Science and Technology Beijing (Grant No. FRF-BR-17018)
摘 要:Let L=-div(A▽) be a second-order divergent-form elliptic operator,where A is an accretive n×n matrix with bounded and measurable complex coefficients on Herein,we prove that the commutator [b,L1/2]of the Kato square root L1/2 and b with ▽b∈Ln(Rn)(n> 2),is bounded from the homogenous Sobolev space L1p(Rn) to Lp(Rn)(p-(L) <p<p+(L)).Let L=-div(A▽) be a second-order divergent-form elliptic operator,where A is an accretive n×n matrix with bounded and measurable complex coefficients on Herein,we prove that the commutator [b,L1/2]of the Kato square root L1/2 and b with ▽b∈Ln(Rn)(n> 2),is bounded from the homogenous Sobolev space L1p(Rn) to Lp(Rn)(p-(L)
关 键 词:COMMUTATOR Kato square root elliptic operators Sobolev space
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7