氮化硅陶瓷磨削表面质量的建模与预测  被引量:16

Modeling and Prediction of Surface Quality of Silicon Nitride Ceramic Grinding

在线阅读下载全文

作  者:吴玉厚[1,2] 王浩 孙健[2] 王贺[1,2] 李颂华[1,2] WU Yu-hou;WANG Hao;SUN Jian;WANG He;LI Song-hua(National-Local Joint Engineering Laboratory of NC Machining Equipment and Technology of High-Grade Stone,Shenyang Jianzhu University,Shenyang 110168,China;School of Mechanical Engineering,Shenyang Jianzhu University,Shenyang 110168,China)

机构地区:[1]沈阳建筑大学高档石材数控加工装备与技术国家地方联合工程实验室,沈阳110168 [2]沈阳建筑大学机械工程学院,沈阳110168

出  处:《表面技术》2020年第3期281-289,共9页Surface Technology

基  金:国家自然科学基金(51675353,51975388);沈阳市“双百工程”计划(Z18-5-023);辽宁省百千万人才工程资助计划(2018921009);沈阳市中青年科技创新人才支持计划(SYSCXRC2017005);辽宁省自然科学基金(2019-ZD-0666,2019-MS-266)。

摘  要:目的提升氮化硅陶瓷加工质量和效率,提高粗糙度模型预测精度。方法提出塑性与塑-脆性去除转变临界切深hc1和塑-脆性与脆性转变临界切深hc2,然后对原有模型进行修正,并引入塑性去除粗糙度修正系数φ1、τ1和塑-脆性去除粗糙度修正系数φ2、τ2,建立基于不同去除方式的粗糙度Ra预测模型,后通过磨削实验对系数进行求解,并得出磨削参数对粗糙度和表面形貌的影响。结果塑性去除粗糙度修正系数φ1=5.872×10^-6、τ1=0.1094,塑-脆性去除粗糙度修正系数φ2=1.299×10^-5、τ^2=0.1582。砂轮线速度vs由30 m/s增大到50 m/s,粗糙度Ra由0.366μm减小到0.266μm,去除方式由脆性断裂向塑性变形转变,表面质量变好。磨削深度ap由5μm增大到45μm,粗糙度Ra由0.252μm增大到0.345μm,去除方式由塑性变形向脆性断裂转变,表面质量变差。工件进给速度vw由1000 mm/min增大到9000 mm/min,粗糙度Ra由0.227μm增大到0.572μm,去除方式由塑性变形向脆性断裂转变,表面质量变差。模型预测值与实验值的相对误差δ在2.1%~8%之间。结论在加工中应控制磨削深度和工件进给速度,适当提高砂轮线速度,以保证加工精度和效率。基于不同去除方式的粗糙度预测模型,可较为精准地预测实际加工情况。The work aims to improve the processing quality and efficiency of silicon nitride ceramics,the prediction accuracy of the roughness model.The critical depth of plastic and plastic-brittle removal transition hc1,critical depth of plastic-brittle and brittle removal transition hc2 were proposed.Secondly,the original model was modified.The roughness correction coefficients of the plastic removalφ1 andτ1,the roughness correction coefficients of the plastic-brittle removalφ2 andτ2 were introduced.A roughness prediction model based on different removal methods was established.Finally,the coefficients were solved by grinding experiments.The effect of grinding parameters on roughness and surface topography were obtained.The results show that the roughness correction coefficients of the plastic removalφ1=5.872×10^-6,τ1=0.1094.The roughness correction coefficients of the plastic-brittle removalφ2=1.299×10^-5,τ^2=0.1582.When the grinding wheel speed vs increases from 30 m/s to 50 m/s,the roughness Ra decreases from 0.366μm to 0.266μm.The removal method changes from brittle fracture to plastic deformation.And the surface quality becomes better.When grinding depth ap increases from 5μm to 45μm,the roughness Ra increases from 0.252μm to 0.345μm.The removal method changes from plastic deformation to brittle fracture.And the surface quality deteriorates.When workpiece feed rate vw increases from 1000 mm/min to 9000 mm/min,the roughness Ra increases from 0.227μm to 0.572μm.The removal method changes from plastic deformation to brittle fracture.And the surface quality deteriorates.The relative error between the model predictive value and the experimental valueδis 2.1%~8%.The conclusion is that the grinding depth and the workpiece feed speed should be controlled during the machining.And the grinding wheel speed should be properly increased to ensure the machining accuracy and efficiency.The roughness prediction model based on different removal methods can accurately predict actual machining conditions.

关 键 词:陶瓷磨削 表面粗糙度 去除方式 未变形切屑厚度 临界切深 建模与预测 

分 类 号:TG580[金属学及工艺—金属切削加工及机床]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象