检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:冯骁骋 龚恒 冷海涛 秦兵[1] 孙承杰[1] 刘挺[1] FENG Xiao-Cheng;GONG Heng;LENG Hai-Tao;QIN Bing;SUN Cheng-Jie;LIU Ting(Department of Computer Science and Technology,Harbin Institute of Technology,Harbin 150001)
机构地区:[1]哈尔滨工业大学计算机科学与技术学院,哈尔滨150001
出 处:《计算机学报》2020年第2期315-325,共11页Chinese Journal of Computers
基 金:国家重点研发计划(2018YFB1005103);国家自然科学基金(61632011,61772156)资助.
摘 要:机器人自动写作是人工智能和自然语言处理领域重要的研究方向,然而传统的自动写作方法主要针对体育新闻、天气预报等较短的段落级文本进行研究,并没有对篇章级文本自动生成技术进行深入地建模.针对这一问题,我们着重研究面向高考作文的篇章级文本生成任务.具体而言我们提出了一种基于抽取式的高考作文生成模型,即先进行抽取再利用深度学习排序方法进行段落内部的文本组合生成.通过实际专家评测,我们所生成的作文能够达到北京高考二类卷平均分数,具有一定的实际应用价值.Automatic writing is an important research direction in the field of Artificial Intelligence and Natural Language Processing.However,the traditional automatic writing methods mainly focused on generating short text,such as sports news and weather forecast,and lack deep modeling of the automatic generation of discourse-level text.In this paper,we focus on the discourse-level text generation task oriented to the essay generation in College Entrance Examination.In particular,we present an extractive essay generation model for the College Entrance Examination.We formulate the task as essay generation from mind,namely taking the input as many topic words in mind and outputting an organized article(a document)with several paragraphs under the theme of the topic.The task is challenging as it requires the generator to deeply understand the way human beings write articles.In addition,after understanding the meaning of a topic word,the following challenge is how to generate a topic focused article,e.g.how to collect topic-specific“fuel”(e.g.sentences)and how to organize them to form an organized article.This is of great importance as an article is not a set of sentences chaotically.Natural language is structured and the coherence/discourse relationship between sentences is a crucial element to improve the readability of a document and to guarantee the structured nature of a document in terms of lexicalization and semantic.Hopefully,solving this problem contributes to making progress towards Artificial Intelligence.For the issues mentioned above,our proposed model consists of two major modules including sentence extraction module and paragraph generation module.First,in order to generate a high-quality essay,the extractive essay generation model needs to determine the focus of each paragraph.Therefore,we first expand the given topic with more related topic words.Then we cluster them into multiple sets.Each of them represents the focus of each paragraph.Second,the model needs to find candidate sentences that are related
关 键 词:文本生成 文本抽取 句子排序 作文生成 自然语言处理
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28