基于模型预测及积分分离PID算法的BLDC控制系统研究  被引量:2

Research on BLDC Control System Based on Model Prediction and Integral Separation PID Algorithms

在线阅读下载全文

作  者:卢军[1] 阴建强 LU Jun;YIN Jian-qiang(Changsha Vocational and Technical College of Civil Affairs,Changsha 410004,China;Zhengzhou Electronic Information Secondary Professional School,Zhengzhou 450100,China)

机构地区:[1]长沙民政职业技术学院,长沙410004 [2]郑州电子信息中等专业学校,郑州450100

出  处:《组合机床与自动化加工技术》2020年第3期106-110,共5页Modular Machine Tool & Automatic Manufacturing Technique

基  金:湖南省教育厅资助项目(16C0084)。

摘  要:文章提出一种基于两步模型预测控制的BLDC电流环控制方案,解决了数字控制系统存在一个周期的延时问题。为了增加控制系统的抗扰动能力,在传统PID控制方法基础上提出一种基于新型积分分离PID控制方法,将新型积分分离PID控制方法应用于BLDC转速和电流闭环控制中,此控制方法不但具有较强的抗负载扰动能力,而且可有效解决传统PID控制引起的控制量超过被控对象从而造成系统震荡的问题。最后通过Matlab/Simulink仿真和实验验证文章所提两种方法的有效性与实用性。Brushless DC Motor(BLDC)needs real-time acquisition of precise motor parameters to ensure its control.A large number of sampling operations lead to poor dynamic control performance.To solve this problem,a BLDC current loop control scheme based on two-step model predictive control is proposed,which solves the problem of one-cycle delay in digital control system.In order to increase the anti-disturbance ability of the control system,a new integral-separated PID control method based on the traditional PID control method is proposed.The new integral-separated PID control method is applied to BLDC speed and current closed-loop control.This control method not only has strong anti-disturbance ability,but also can effectively solve the problem that the control quantity caused by the traditional PID control exceeds that of the controlled object.The problem of system oscillation.Finally,the validity and practicability of the two methods mentioned in this paper are verified by simulation and experiment with MATLAB/Simulink.

关 键 词:无刷直流电机 两步模型预测控制 新型积分分离PID控制 

分 类 号:TH122[机械工程—机械设计及理论] TG506[金属学及工艺—金属切削加工及机床]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象