钢骨超高强混凝土框架结构恢复力模型研究  

A Restoring Force Model of SRUHSC Composite Frame

在线阅读下载全文

作  者:张建成[1,2] 曹茂森 贾金青 徐浩[1] ZHANG Jiancheng;CAO Maosen;JIA Jinqing;XU Hao(School of Naval Architecture and Civil Engineering,Jiangsu University of Science and Technology,Zhangjiagang,Jiangsu 215600,China;The College of Mechanics and Materials,Hohai University,Nanjing,Jiangsu 211100,China;The State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology,Dalian,Liaoning 116024,China)

机构地区:[1]江苏科技大学船舶与建筑工程学院,江苏张家港215600 [2]河海大学力学与材料学院,江苏南京211100 [3]大连理工大学海岸与近海工程国家重点实验室,辽宁大连116024

出  处:《水利与建筑工程学报》2020年第1期158-162,共5页Journal of Water Resources and Architectural Engineering

基  金:国家自然科学基金资助项目(51178078);中国博士后科学基金项目(2019M661710);江苏省高等学校自然科学研究面上项目(18KJB560006)。

摘  要:鉴于目前缺乏钢骨超高强混凝土(SRUHSC)框架结构的恢复力计算模型,基于SRUHSC框架结构低周反复加载试验结果,提出了考虑加载循环退化效应的SRUHSC框架结构恢复力模型,运用MATLAB编写了相应的计算程序。通过对比P-Δ滞回环以及等效黏滞阻尼系数heq、耗能比ζ、功比指数Iw三个抗震耗能参数的模拟值与试验值,结果表明,滞回环及各参数的吻合度均较好,该恢复力模型可较为准确地反映SRUHSC框架结构的主要受力特征,可为SRUHSC框架结构的抗震性能研究提供一定的理论依据。Given that there is no suitable model for steel reinforced ultra-high strength concrete(SRUHSC) frame system, a new hysteretic model for SRUHSC frame considering cyclic deterioration effect was proposed based on the low reversed cyclic loading test in this paper. Meanwhile the corresponding MATLAB calculated program was written and applied to simulate the P-Δ hysteretic loops, equivalent viscous damping ratio heq, energy dissipation ratio ζ as well as power ratio index Iw. Results show that the hysteretic loops, heq, ζ and Iw calculated from the presented model have a good agreement with the experiments. The applicability and accuracy of the proposed model was therefore verified. Additionally, the proposed restoring model can describe the seismic performance of SRUHSC frame under cyclic load.

关 键 词:SRUHSC框架结构 恢复力模型 MATLAB 抗震性能 

分 类 号:TU398[建筑科学—结构工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象