基于ARMA模型预测的交换机流表更新算法  被引量:5

Flow Table Updating Algorithm Based on ARMA Model Prediction

在线阅读下载全文

作  者:刘钊 夏鸿斌[1,2] LIU Zhao;XIA Hongbin(School of Digital Media,Jiangnan University,Wuxi,Jiangsu 214122,China;Jiangsu Key Laboratory of Media Design and Software Technology,Jiangnan University,Wuxi,Jiangsu 214122,China)

机构地区:[1]江南大学数字媒体学院,江苏无锡214122 [2]江南大学江苏省媒体设计与软件技术重点实验室,江苏无锡214122

出  处:《计算机工程与应用》2020年第7期122-129,共8页Computer Engineering and Applications

基  金:国家科学支撑计划课题(No.2015BAH54F01)。

摘  要:针对SDN网络中交换机在网络流量高峰期流表匹配率低以及控制器负载过重的问题,提出了一种基于自回归移动平均(ARMA)模型预测的交换机流表更新算法。算法首先收集每个取样周期内的新增流表项数量作为历史数据,然后使用ARMA模型对收集的历史数据进行分析,预测下一个周期内新增加的流表项数量,并结合当前流表空间的使用情况,清除交换机中过去一段时间内使用频率较低的流表项。采用真实数据中心网络数据的模拟实验结果表明,与流表更新的一般方法相比,该算法有效地提高了交换机流表的匹配率,并减少了交换机与控制器之间交互的次数,降低了控制器端的负载。In order to solve the problem of insufficient resources of flow table during tthe peak period of network traffic and the overload of controller in the Software Defined Network(SDN), a flow table updating algorithm based on ARMA model prediction for SDN switch is proposed. The algorithm firstly collects the number of new flow entries in each unit time, then uses ARMA model to analyze the collected historical data, and predicts the number of additional flow entries in the next unit time. Finally, according to the usage of the flow table space, the low frequency flow entries in the past period of time are eliminated dynamically. The experimental results show that compared with the general method of flow table updating, the proposed algorithm can improve the matching rate of flow table and can decrease the frequency of interaction between the switch and the controller, and the burden of the controller is reduced as well.

关 键 词:软件定义网络(SDN) SDN交换机 流表更新算法 ARMA模型 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象