检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈秋菊 徐建国[2] CHEN Qiuju;XU Jianguo(Department of Wine Engineering Automation,Moutai Institute,Renhuai,Guizhou 564500,China;College of Systems Engineering,National University of Defense Technology,Changsha 410073,China)
机构地区:[1]茅台学院酿酒工程自动化系,贵州仁怀564500 [2]国防科学技术大学系统工程学院,长沙410073
出 处:《计算机工程与应用》2020年第7期162-169,共8页Computer Engineering and Applications
基 金:国家自然科学基金(No.71671186)。
摘 要:声音事件识别时受到各种环境声的影响,采用优化正交匹配跟踪(Orthogonal Matching Pursuit,OMP)和短时谱估计对声音信号进行二次重构,能有效提高识别性能。采用粒子群算法(Particle Swarm Optimization,PSO)优化OMP稀疏分解作首次重构,保留声音信号的主体;采用短时谱估计对首次重构后的残余信号作声音增强处理,完成二次重构,去除非平稳噪声和提高重构声音信号的精度;对重构信号提取梅尔频率倒谱系数(Mel Frequency Cepstrum Coefficient,MFCC)特征、优化OMP时-频特征和基频(Pitch)特征,组成复合抗噪特征集OOMP;使用深度置信网络(Deep Belief Network,DBN)对OOMP特征进行学习,并对40种声音事件在不同环境不同信噪比下进行识别。实验结果表明,该方法在不同信噪比的各种环境声中平均识别率为70.44%,且在-5 dB的情况下仍然可以达到49.90%的识别率,从而说明所提方法能有效地识别各种环境下的声音事件。A sound event recognition method based on optimized Orthogonal Matching Pursuit(OMP)and short-time spectrum estimation is proposed for decreasing the influence of sound event recognition on various environments. Firstly,Particle Swarm Optimization(PSO)is adopted to optimize OMP for sparse decomposition and reconstruction of sound signal to reserve the main body of sound signal. Secondly, the short-time spectrum estimation algorithm is employed to strengthen the residue signal after the first reconstruction and compensate the first reconstructed sound signal to reduce the influence of non-stationary noise and improve the precision of reconstructed sound signal. Then, an anti-noise composited feature of Mel Frequency Cepstrum Coefficient(MFCC), time-frequency OMP feature, and Pitch feature is extracted from reconstructed signal, called OOMP feature. Finally, Deep Belief Networks(DBN)is employed to learn the OOMP feature and recognize 40 classes of sound events in different environment and SNR. The mean recognition rate can reach at 70.44% in different environment and SNR, and 49.9% even at-5 dB, the experimental results show that the proposed method can effectively recognize sound events in various environments.
关 键 词:声音事件识别 正交匹配追踪 粒子群优化 短时谱估计 深度置信网
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.18.100