Exact solutions of stochastic fractional Korteweg de–Vries equation with conformable derivatives  被引量:2

Exact solutions of stochastic fractional Korteweg de–Vries equation with conformable derivatives

在线阅读下载全文

作  者:Hossam A.Ghany Abd-Allah Hyder M Zakarya 

机构地区:[1]King Khalid University,College of Science,Department of Mathematics,P.O.Box 9004,61413,Abha,Saudi Arabia [2]Department of Engineering Mathematics and Physics,Faculty of Engineering,Al-Azhar University,11371,Cairo,Egypt [3]Department of Mathematics,Helwan University,Sawah Street(11282),Cairo,Egypt [4]Department of Mathematics,Faculty of Science,Al-Azhar University,71524,Assiut,Egypt

出  处:《Chinese Physics B》2020年第3期62-69,共8页中国物理B(英文版)

基  金:the Deanship of Scientific Research at King Khalid University for funding their work through Research Group Program under grant number(G.P.1/160/40)。

摘  要:We deal with the Wick-type stochastic fractional Korteweg de–Vries(KdV) equation with conformable derivatives.With the aid of the Exp-function method, white noise theory, and Hermite transform, we produce a novel set of exact soliton and periodic wave solutions to the fractional KdV equation with conformable derivatives. With the help of inverse Hermite transform, we get stochastic soliton and periodic wave solutions of the Wick-type stochastic fractional KdV equation with conformable derivatives. Eventually, by an application example, we show how the stochastic solutions can be given as Brownian motion functional solutions.We deal with the Wick-type stochastic fractional Korteweg de–Vries(KdV) equation with conformable derivatives.With the aid of the Exp-function method, white noise theory, and Hermite transform, we produce a novel set of exact soliton and periodic wave solutions to the fractional KdV equation with conformable derivatives. With the help of inverse Hermite transform, we get stochastic soliton and periodic wave solutions of the Wick-type stochastic fractional KdV equation with conformable derivatives. Eventually, by an application example, we show how the stochastic solutions can be given as Brownian motion functional solutions.

关 键 词:Korteweg de–Vries(KdV)equation conformable DERIVATIVE stochastic BROWNIAN motion Expfunction method 

分 类 号:O211.63[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象