检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈婕[1] CHEN Jie(Institute of Information Technology Guilin University of Electronic Technology,Guilin 541004 China)
机构地区:[1]桂林电子科技大学信息科技学院,广西桂林541004
出 处:《电光与控制》2020年第3期89-93,114,共6页Electronics Optics & Control
摘 要:提出了一种考察独立性和相关性的合成孔径雷达(SAR)图像目标识别方法。由于SAR图像的方位角敏感性,参与识别的多视角SAR图像之间的关联性不够稳定。首先,基于图像相关对多视角SAR图像进行聚类,获得具有较强内在关联的多个视角集。然后,对于每一个视角集,分别采用联合稀疏表示对其进行联合重构,获得高精度的重构误差。最终,采用线性加权的方法融合各个视角集合的重构误差并根据融合误差判定目标类别。基于MSTAR数据集进行了实验测试,结果表明了提出方法的有效性。A Synthetic Aperture Radar(SAR)target recognition method in multi-view SAR images is proposed in consideration of both independency and correlation.Due to the azimuth sensitivity of SAR images the correlations among the multi-view SAR images for recognition are not stable enough.Therefore the multi-view SAR images are first clustered into several sets based on image correlation.Images in each set share relatively high correlations.Afterwards Joint Sparse Representation(JSR)is employed to jointly reconstruct the multi-view SAR images in each view set and produces the reconstruction errors with high precision.Finally the linear weighting strategy is used to fuse the reconstruction errors from different view sets to determine the target label.Experiment tests are carried out on the MSTAR dataset.The results prove the effectiveness of the proposed method.
分 类 号:TP753[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249