机构地区:[1]College of Ocean and Meteorology,Guangdong Ocean University,Zhanjiang 524000,China [2]State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics(LASG),Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China [3]College of Earth and Planetary Sciences,University of Chinese Academy of Sciences,Beijing 100049,China
出 处:《Acta Oceanologica Sinica》2020年第3期12-24,共13页海洋学报(英文版)
基 金:The National Key R&D Program for Developing Basic Sciences under contract Nos 2016YFC1401401 and 2016YFC1401601;the National Natural Science Foundation of China under contract Nos 41576025, 41576026 and 41776030.
摘 要:The impacts of Kuroshio intrusion(KI) optimization on the simulation of meso-scale eddies(MEs) in the northern South China Sea(SCS) were investigated based on an eddy-resolving ocean general circulation model by comparing two numerical experiments with differences in their form and intensity of KI due to the optimizing topography at Luzon Strait(LS). We found that a reduced KI reduces ME activities in the northern SCS, which is similar to the observations. In this case, the biases of the model related to simulating the eddy kinetic energy(EKE) west of the LS and along the northern slope are remarkably attenuated. The reduced EKE modeling bias is associated with both the reduced number of anti-cyclonic eddies(AEs) and the reduced amplitude of cyclonic eddies(CEs). The EKE budget analysis further suggests that the optimization of the KI will change the EKE by changing the horizontal velocity shear and the slope of the thermocline, which are related to barotropic and baroclinic instabilities, respectively. The former plays the key role in regulating the EKE in the northern SCS due to the changing of the KI. The EKE advection caused by the KI is also important for the EKE budget to the west of the LS.The impacts of Kuroshio intrusion(KI) optimization on the simulation of meso-scale eddies(MEs) in the northern South China Sea(SCS) were investigated based on an eddy-resolving ocean general circulation model by comparing two numerical experiments with differences in their form and intensity of KI due to the optimizing topography at Luzon Strait(LS). We found that a reduced KI reduces ME activities in the northern SCS, which is similar to the observations. In this case, the biases of the model related to simulating the eddy kinetic energy(EKE) west of the LS and along the northern slope are remarkably attenuated. The reduced EKE modeling bias is associated with both the reduced number of anti-cyclonic eddies(AEs) and the reduced amplitude of cyclonic eddies(CEs). The EKE budget analysis further suggests that the optimization of the KI will change the EKE by changing the horizontal velocity shear and the slope of the thermocline, which are related to barotropic and baroclinic instabilities, respectively. The former plays the key role in regulating the EKE in the northern SCS due to the changing of the KI. The EKE advection caused by the KI is also important for the EKE budget to the west of the LS.
关 键 词:South China Sea MESO-SCALE EDDY KUROSHIO intrusion LUZON STRAIT
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...