机构地区:[1]上海交通大学材料科学与工程学院,上海200240 [2]纳米技术及应用国家工程研究中心,上海200241
出 处:《材料导报》2020年第7期26-35,共10页Materials Reports
基 金:国家重点基础研究发展计划(973计划)项目(2015CB931901);上海市高新技术领域项目(18511110000);上海市基础重大项目(18JC1410604)。
摘 要:随着环境问题和能源问题的日益突出,传统汽车逐渐走向新能源化。锂离子电池具有放电电压平台高、自放电小、环境友好等优点,被认为是最有前景的新能源汽车动力之一。然而,随着人们对新能源汽车续航能力要求的逐渐提高,进一步提高汽车动力电池的能量密度成为当今社会研究的热点。目前,商业化车用动力锂离子电池的正极材料以磷酸铁锂(LiFePO4)和三元材料(Li(Nix Coy Mn1-x-y)O)为主,负极以石墨为主,其能量密度仅为200~300 Wh·kg^-1。因此,提高汽车动力电池的能量密度,研发高能量密度的正负极材料是动力电池的研究方向之一。硅具有4200 mAh·g^-1的超高理论比容量,是制备车用高能量密度型锂离子电池最有前景的负极材料之一。然而,硅在充放电反应中的剧烈体积变化严重阻碍了其商业应用。硅采用合金化反应方式储存锂离子,合金化反应在提供高比容量的同时伴随着300%的体积膨胀。剧烈的体积变化导致活性物质脱落、SEI膜持续形成等问题,进而导致实际使用时电池容量的快速衰减。此外,纯硅属于半导体,本征载流子浓度很低,无法满足电极对导电性的要求。解决上述问题最常用的方法有以下三种:(1)硅的纳米化。锂离子在固体中的扩散较为困难,在外加电场作用下,锂离子在硅中的扩散速度依然很慢。通过硅纳米化的方式可以缩短锂离子从硅表面到中心的扩散距离,有效缩短电池充电时间。(2)硅/碳复合。碳材料具有良好的循环稳定性和导电性,将硅与碳复合,碳可以缓冲硅在合金化反应中剧烈的体积变化,提高整个负极的电子电导率,外层碳壳能阻止硅和电解液的直接接触,形成稳定的SEI膜。(3)微观结构设计。中空核-壳结构、3D多孔结构等特殊结构可以缓解硅的体积膨胀效应,有效抑制电极材料的脱落。研究中经常综合使用上述三种方法来制备高性�With the increasing environmental and energy problems,traditional cars are gradually moving toward new energy.Lithium-ion batteries are considered to be one of the most promising new energy vehicle powers due to their high discharge voltage platform,low self-discharge rate and friendly environment.However,with the increasing demand for the driving distance of new energy vehicles,improving the energy density of batteries has become a hot topic.Therefore,improving the energy density of batteries for pure electric vehicles and developing high energy density positive and negative materials are one of the research directions of batteries.At present,the cathode materials of commercial pure electric vehicles are mainly LiFePO 4 and Li(NixCoyMn1-x-y)O.The anode material is graphite.This type of battery has an energy density of only 200—300 Wh·kg-1.Silicon has a high theoretical specific capacity of 4200 mAh·g^-1,which is one of the most promising anode materials for high energy density lithium ion batteries.However,the dramatic volume change of silicon in the charge and discharge reaction hinders the commercial application of silicon materials.The alloying reaction of silicon can store lithium ions.The alloying reaction provides a high specific capacity accompanied by a 300%volume expansion.A drastic volume change causes the active material to fall off,and the SEI film continues to form,which causes a rapid decay of the battery capacity in actual use.In addition,pure silicon is a semiconductor with low intrinsic carrier concentration,so it can not meet the requirements for conductivity.The most common methods for the above problems are listed below:(ⅰ)Synthesis of nano-sized silicon.The diffusion of lithium ions in solids is difficult.Although with the help of the electric field,the diffusion rate of lithium ions in silicon is still very slow.Silicon nanocrystallization can shorten the diffusion distance of lithium ions from the silicon surface to the center,which effectively shortens the battery charging time.(ⅱ
关 键 词:硅/碳负极 锂离子电池 高能量密度 包覆掺杂 硅基材料
分 类 号:TM912.6[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...