检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:叶文雨 谢序泽[2] 许钰滢 倪明月 胡红莉 余文英[2] Norvienyeku Justice[2] 鲁国东 YE Wenyu;XIE Xuze;XU Yuying;NI Mingyue;HU Hongli;YU Wenying;Norvienyeku Justice;LU Guodong(China National Engineering Research Center of JUNCAO Technology,Fujian Agriculture and Forestry University,Fuzhou,Fujian 350002,China;College of Life Sciences,Fujian Agriculture and Forestry University,Fuzhou,Fujian 350002,China;College of Plant Protection,Fujian Agriculture and Forestry University,Fuzhou,Fujian 350002,China)
机构地区:[1]国家菌草工程技术研究中心,福建福州350002 [2]福建农林大学生命学院,福建福州350002 [3]福建农林大学植物保护学院,福建福州350002
出 处:《热带作物学报》2020年第3期556-563,共8页Chinese Journal of Tropical Crops
基 金:国家财政支持地方的科技项目(No.2018L3003);福建省自然科学基金(No.2015J0504);福建省教育厅项目(No.JA15186)。
摘 要:为了解福州菌草基地巨菌草和绿洲一号2种菌草的根际土壤真菌群落多样性,采用Illumina Miseq高通量测序技术和生物信息学方法,对菌草根际土真菌的多样性及群落结构进行分析。结果表明:从3份土壤样本中获得525 292条ITS序列,在97%序列相似性基础上可划分为7267个可操作分类单元(OTU)。真菌群落的丰富度指数(ACE)以菌草非根际土最低,绿洲一号根际土略高于巨菌草根际土;而多样性指数(Shannon-Wiener和Simpson)菌草根际土高于非根际土,绿洲一号根际土略高于巨菌草根际土。3份样品的优势菌门为子囊菌门(Ascomycota)、担子菌门(Basidiomycota)、接合菌门(Zygomycota)、壶菌门(Chytridiomycota)、球囊菌门(Glomeromycota);优势菌纲为散囊菌纲(Eurotiomycetes)、粪壳菌纲(Sordariomycetes)、座囊菌纲(Dothideomycetes)、伞菌纲(Agaricomycetes)、锤舌菌纲(Leotiomycetes)、圆盘菌纲(Orbiliomycetes)、银耳纲(Tremellomycetes)、粘膜菌纲(Wallemiomycetes);优势菌属为篮状菌属(Talaromyces)、深黄伞形霉属(Umbelopsis)、枝孢菌属(Cladosporium)、暗双孢菌属(Cordana)、镰刀菌属(Fusarium)、隐球菌属(Cryptococcus)、淡紫紫霉属(Purpureocillium)、赤霉菌属(Gibberella)、灵芝属(Ganoderma)。研究结果表明,菌草根际土真菌群落多样性高于非根际土,为进一步更好地利用菌草提供理论参考依据。High-throughput sequencing and bioinformatics analysis were used to analyze the composition of fungal communities in the rhizosphere and non-rhizosphere soils from the plants for mushroom cultivation. A total of 525 292 fungal ITS sequences from the samples were obtained. 7267 OTU(operational taxonomic units) could be grouped based on 97% sequence similarity as the threshold. The ACE of the fungal community was the lowest in the non-rhizosphere soil, and the rhizosphere soil of Lvzhou No. 1 was slightly higher than that in the rhizosphere soil of the plants for mushroom cultivation. The Shannon-wiener and Simpson values obtained for rhizosphere soils were higher than the values recorded from non-rhizosphere soils. Also, the Shannon-wiener and Simpson values for Lvzhou No. 1 rhizosphere soil was slightly higher compared to the values obtained for the rhizosphere soil of the plants for mushroom cultivation. This study further revealed Ascomycota, Basidiomycota, Zygomycota, Chytridiomycota, and Glomeromycota as the pre-dominant phylum present in all the rhizosphere soil samples. From class level analysis, we identified eight pre-dominant classes in all soil samples, including Eurotiomycetes, Sordariomycetes, Agaricomycetes, Leotiomycetes, Orbiliomycetes, Tremellomycetes, Dothideomycetes, and Wallemiomycetes. Nine pre-dominant genuses, including Talaromyces, Umbelopsis, Cladosporium, Cordana, Fusarium, Cryptococcus, Purpureocillium, Gibberella, and Ganoderma in all the soil samples were revealed. The results would provide insights into the prevailing upsurge in diversity in the rhizosphere fungi community compared to the non-rhizosphere soil and would serve as a reference for the characterization of rhizosphere fungi.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.11.120