检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:阮文俊 胡小龙[1] 李丽华[1] RUAN Wenjun;HU Xiaolong;LI Lihua(School of Computer Science and Engineering,Central South University,Changsha 410075,China)
出 处:《湖北大学学报(自然科学版)》2020年第2期136-141,共6页Journal of Hubei University:Natural Science
摘 要:提高推荐系统的推荐性能过去一直是一个非常大的挑战,因为在进行推荐的时候要同时兼顾推荐结果的准确性和计算推荐结果的计算时间.基于上述问题,提出一种基于深度学习的推荐算法,通过深度学习的方法挖掘用户和电影的特征、训练模型,从而提高推荐算法准确性.同时,通过神经网络提取用户和电影的特征,而不是基于用户对电影的评分矩阵,解决了推荐系统中的稀疏性问题和冷启动问题.最后在真实的数据集上进行实验,验证推荐算法的准确性.Improving the recommendation performance of the recommendation system has always been a very big challenge,because the accuracy of the recommendation results and the calculation time for calculating the recommendation results are taken into consideration when making the recommendation.Based on the above problems,we proposed a recommendation algorithm based on deep learning,which used the deep learning method to mine the characteristics of users,movies and trains the model to improve the accuracy of the recommendation algorithm.At the same time,the characteristics of users and movies were extracted through the neural network,instead of solving the sparsity problem and the cold start problem in the recommendation system based on the user′s scoring matrix for the movie.And an experiment on real data was set to verify the accuracy of the recommended algorithm.
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117