检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:彭诚[1] 丁蔚[1] 侯旭玮 李军[1] PENG Cheng;DING Wei;HOU Xu-Wei;LI Jun(Beijing Oriental Institute of Measurement and Test,Beijing 100086,China)
出 处:《宇航计测技术》2020年第1期61-66,共6页Journal of Astronautic Metrology and Measurement
摘 要:为提高手持式数字万用表校准系统的自动化水平,本文通过研究图像灰度阈值法、传统方法的目标分类和深度学习三种不同类型的字符识别技术,提出了两种基于机器视觉的数字识别方案。测试结果显示,两种方案的字符识别准确率均可达到99.8%,但其在硬件资源占比、编程难易程度上二者还存在显著差异。该机器视觉字符识别功能的成功开发与应用,可为更多无程控通信接口的计量测试设备,及一些不适于人工作业的危险计量工作环境进行类似的数字识别提供借鉴。To improve the automation level of the handheld digital multimeter calibration system,two methods of digital recognition schemes based on machine vision were proposed by studying three different types of character recognition technology,namely image gray threshold method,target classification by traditional methods and deep learning.The test result shows that although the character recognition accuracy of two schemes can both reach 99.8%,there are significant differences in proportion of hardware resources and degree of programming difficulty.After this machine vision character recognition function has been successfully developed,it will provide useful reference for more metering test equipment without program-controlled communication interface,or similar digital recognition in some dangerous metering working environment which is not suitable for manual operation.
关 键 词:机器视觉 数字万用表 自动化 字符识别 数字识别 深度学习
分 类 号:TP249[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.251.232