检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王世芳 WANG Shi-fang(School of Economics,Anhui University,Hefei Anhui 230601)
出 处:《巢湖学院学报》2020年第1期54-61,共8页Journal of Chaohu University
基 金:安徽省科技创新战略与软科学重大研究专项项目(项目编号:1706a02020046)。
摘 要:研究基于我国30个省市自治区(西藏除外)2009年以来的研发投入产出基本面数据,运用超效率DEA模型测算了各地区的政府R&D资助效率,结果表明,我国政府R&D资助效率存在着显著的省际差异,这种差异性既有资助规模的原因,也有管理水平的原因;接着为了进一步揭示这种差异性的深层次原因,运用Tobit模型对政府R&D资助效率差异性的政府层面、企业层面原因进行实证分析,结果表明,政府R&D资助率、R&D资助政策的稳定性、政府R&D经费分配结构、R&D人员学历结构及R&D投入强度等因素均对政府R&D资助效率有显著影响。最后在此基础上,针对中国政府R&D资助效率的提高提出相应政策建议。Based on the fundamental data of R&D input and output in China′s 30 provinces and autonomous regions since 2009, the super efficient DEA model is used to measure the efficiency of government R&D funding in various regions. The results show that there are significant inter-provincial differences in efficiency of Chinese government R&D funding for reasons of funding scale and management. Then, in order to further reveal the deep-seated reasons for this difference, the Tobit model is used to measure the efficiency of government R&D funding. Empirical analysis of the reasons at the enterprise level shows that the government R&D funding rate, the stability of the R&D funding policy, the government R&D funding allocation structure, the R&D personnel qualification structure and the R&D investment intensity all have significant effects on the government R&D funding efficiency. Finally, on this basis, the corresponding policy recommendations are proposed for the improvement of the efficiency of Chinese government R&D funding.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49