检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵鹏[1,2] 王美玉[1,2] 纪霞 刘慧婷[1,2] ZHAO Peng;WANG Mei-yu;JI Xia;LIU Hui-ting(Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education,Anhui University,Hefei,Anhui 230601;School of Computer Science and Technology,Anhui University,Hefei,Anhui 230601,China)
机构地区:[1]安徽大学计算机智能与信号处理教育部重点实验室,安徽合肥230601 [2]安徽大学计算机科学与技术学院,安徽合肥230601
出 处:《电子学报》2020年第2期359-368,共10页Acta Electronica Sinica
基 金:国家自然科学基金(No.61602004);安徽省高校自然科学研究重点项目(No.KJ2018A0013,No.KJ2017A011);安徽省自然科学基金(No.1908085MF188,No.1908085MF182);安徽省重点研究与开发计划项目(No.1804d08020309)。
摘 要:本文提出一种新的基于张量表示的域适配迁移学习中的特征表示方法,即融合联合域对齐和适配正则化的基于张量表示的迁移学习特征表示方法.当源域和目标域差异很大时,仅将源域对齐潜在共享空间,会造成数据扭曲过大.为缓解此问题,本文方法提出联合域对齐,即源域和目标域同时对齐共享子空间.并且本文方法将适配正则化引入张量表示空间求解.本文适配正则化包括动态分布对齐和图适配,以缩小域间分布差异和保留样本间流行一致性.最后融合联合域对齐,动态分布对齐和图适配,通过联合优化求解获得共享子空间表示.几个公共的跨域数据集上的大量实验结果表明了本文方法优于其它主流的迁移学习方法,验证了本文方法的有效性.A novel feature representation based on tensor and domain adaption for transfer learning is proposed,which combines joint domain alignment and adaptation regularization.When the difference between the source domain and the tar-get domain is very large,only aligning the source domain to the potential shared subspace will result in too much data distor-tion.To alleviate this problem,this paper proposes joint domain alignment,which aligns the source domain and the target do-main to the potential shared subspaces simultaneously.Furthermore,the adaption regularization is introduced into the sub-space learning based on tensor.In the proposed method,adaptation regularization includes dynamic distribution alignment and graph adaptation to reduce the distribution differences among different domains and preserve the manifold consistency.Final-ly,the joint domain alignment,dynamic distributed alignment and graph adaptation are fused,and the joint optimization is u-tilized to obtain the feature representation.Extensive experiments on several common cross-domain datasets show that the proposed method outperforms the state-of-the-art on the tasks of transfer learning and the effectiveness of the proposed meth-od is verified.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.25