检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Sachin B Kadam Yogendra Singh Li Bing
机构地区:[1]Department of Applied Mechanics,Walchand College of Engineering,Sangli,Maharastra 416415,India [2]Department of Earthquake Engineering,Indian Institute of Technology Roorkee,Roorkee,Uttarakhand 247667,India [3]Natural Hazard Research Centre,School of Civil and Environmental Engineering,Nanyang Technological University,Singapore 639798,Singapore
出 处:《Earthquake Engineering and Engineering Vibration》2020年第2期397-412,共16页地震工程与工程振动(英文刊)
摘 要:The Himalayan region is one of the major seismic areas in the world.However,similar to many other seismically active locations,there are substantial numbers of unreinforced masonry(URM)buildings;the majority of which have not been designed for seismic loads.Past seismic events have shown that such buildings are highly vulnerable to earthquakes.Retrofitting of these URM buildings is an important concern in earthquake mitigation programs.Most government school buildings in rural areas of northern India are constructed of unreinforced masonry.These school buildings are socially important structures and serve as a crucial resource for rehabilitation during any disaster.The effectiveness of ferrocement(FC)to create a URM-FC composite is described in this study by estimating the performance and fragility of a URM school building before and after a retrofit.Analytical models,based on the equivalent frame method,are developed and used for nonlinear static analysis to estimate the enhancement in capacity.The capacity enhancement due to retrofitting is presented in terms of the maximum PGA sustained and damage probabilities at the expected level of earthquake hazard.
关 键 词:unreinforced MASONRY school building PUSHOVER analysis seismic FRAGILITY
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13