检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:石旭东 姜鸿晔 Shi Xudong;Jiang Hongye(School of Electronic Information and Automation,Civil Aviation University of China,Tianjin 300300,China)
机构地区:[1]中国民航大学电子信息与自动化学院,天津300300
出 处:《计算机应用与软件》2020年第4期89-94,共6页Computer Applications and Software
基 金:国家自然科学基金项目(51377161)。
摘 要:针对飞机高频通信中通信频率选择不当导致信号衰落等问题,提出一种基于混沌理论和思维进化算法优化的Elman神经网络相结合的临界频率f0F2预测方法。分析和验证f0F2时间序列的混沌特性;采用混沌理论重构技术重建f0F2时间序列的相空间,并根据相空间结构确定Elman神经网络各层节点个数;利用思维进化算法优化Elman神经网络的初始权值和阈值。数值和实验分析表明,Chaos-MEA-Elman算法比Elman神经网络对电离层临界频率f0F2的预测精确度更高,为预测飞机最佳通信频率提供新的方法。Aiming at the problem of signal fading caused by improper communication frequency selection in aircraft high-frequency communication,this paper proposes a prediction method of critical frequency f 0F 2 based on chaos theory and Elman neural network optimized by mind evolutionary algorithm.It analyzed and verified the chaotic characteristics of f 0F 2 time series.Then,the chaotic theory reconstruction technique was used to reconstruct the phase space of the f 0F 2 time series,and the number of nodes in each layer of the Elman neural network was determined according to the phase space structure.Finally,the initial weights and thresholds of Elman neural network were optimized by using mind evolutionary algorithm.Numerical and experimental results show that the Chaos-MEA-Elman algorithm has higher prediction accuracy of the ionospheric critical frequency f 0F 2 than the Elman neural network,and it provides a new method for predicting the optimal communication frequency of aircraft.
关 键 词:频率预测 混沌理论 思维进化 ELMAN神经网络
分 类 号:P352[天文地球—空间物理学] TP3[天文地球—地球物理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249