中间相炭微球在锂离子电池负极材料的应用进展  被引量:6

Application progress on mesocarbon microbeads as anode materials for lithium ion batteries

在线阅读下载全文

作  者:杜俊涛 聂毅 吕家贺[1,3] 马江凯 郏慧娜 张敏鑫 孙一凯 郑双双 白璐 DU Juntao;NIE Yi;LYU Jiahe;MA Jiangkai;JIA Huina;ZHANG Minxin;SUN Yikai;ZHENG Shuangshuang;BAI Lu(Zhengzhou Institute of Emerging Industrial Technology,Zhengzhou 450000,China;Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China;School of Chemical Engineering,Dalian University of Technology,Dalian 116024,China;School of Chemical Engineering,Zhengzhou University,Zhengzhou 450000,China)

机构地区:[1]郑州中科新兴产业技术研究院(中国科学院过程工程研究所郑州分所),河南郑州450000 [2]中国科学院过程工程研究所,北京100190 [3]大连理工大学化工学院,辽宁大连116024 [4]郑州大学化工学院,河南郑州450000

出  处:《洁净煤技术》2020年第1期129-138,共10页Clean Coal Technology

基  金:国家自然科学基金资助项目(21908206);中国科学院重点部署项目(ZDRW-ZS-2018-1-3)。

摘  要:中间相炭微球(MCMB)具有良好锂离子扩散性、导电性和机械稳定性等优势,是目前应用广泛、综合性能优异的锂离子电池负极材料,但较低理论比容量是制约其发展的关键因素。为了获得性能优良的MCMB基锂离子电池负极材料,改性修饰和复合材料已然成为目前研发重点。笔者论述了碳结构、表界面和复合材料等微观结构设计对MCMB负极材料电化学性能的影响。从碳堆积结构类型、有序性、层间距以及球体粒径大小等方面,论述了碳结构微观设计对MCMB电化学性能的影响。发现具有乱层结构的MCMB在充放电过程中内部产生应力较小,且碳结构较稳定,具有优异循环稳定性;内部具有大量微孔或碳层间距较大的MCMB,在充放电过程中可提高锂离子在电极中的迁移速率,并提供更多的储锂空间,一般具有优良的充放电比容量和倍率性能;小粒径MCMB具有较短的锂离子迁移路径和随之增加的比表面积,通常具有较好倍率性能,伴随着可逆比容量和充放电效率的衰减。从表界面碳层改性、包覆和掺杂改性等方面,论述了表界面改性对MCMB电化学性能的影响。表面碳层修饰可增加MCMB与电解液的相容性及其比表面积,提高了与电解液的接触面积及贮锂容量,改善了锂离子电池负极材料的电化学性能;另外,MCMB表面包覆一层无定型碳,可避免其表面与电解液直接接触,减少电化学副反应的产生,提升其可逆比容量。从碳活性物质复合材料、非碳活性物质复合材料等方面,论述了复合材料微观结构设计对MCMB电化学性能的影响。碳活性物质可降低MCMB内部碳层结构的有序性,减少锂离子嵌入过程中的内部应力,提升MCMB循环稳定性。非碳活性物质诱导MCMB生成更加有序的碳层结构,提高MCMB的比表面积,从而改善MCMB表面与电解液分子的接触能力及其嵌锂性能,有利于提升MCMB负极材料可逆比容量、循�MCMB has the advantages of good lithium ion dispersion,conductivity and mechanical stability,which is a widely used anode material of lithium ion battery with excellent comprehensive performance. However,the low theoretical specific capacity is a key factor for restricting its development. In order to obtain MCMB based anode materials with excellent performance,the modification of MCMB and its composite materials have become the focus of current research and development. So,the effect of microstructure design on electrochemical properties of MCMB lithium-ion battery anode materials was discussed,such as carbon structure,surface interface and composite materials.The influence of carbon structure microstructure design on the electrochemical performance of MCMB was discussed from the aspects of carbon stacking structure type,carbon layer order,carbon layer interlayer spacing and sphere particle size. It is concluded that MCMB with a disordered layer structure generates less internal stress during charging and discharging,and the carbon structure is relatively stable,thereby it has excellent cycle stability. MCMB with a large number of micropores or a large carbon layer spacing,can increase the migration rate of lithium ions in the electrode and provide more lithium storage space during charging and discharging,which often shows excellent charge and discharge specific capacity and rate performance. MCMB with the small particle size has a shorter lithium ion migration path,but the specific surface area of the electrode material will also increase accordingly,which show better rate performance and relatively poor reversible specific capacity and the attenuation of charge discharge efficiency.The influence of surface interface carbon layer modification on the electrochemical properties of MCMB was discussed from the aspects of surface interface modification,coating and doping modification. The literature indicates that the surface carbon layer modification can increase the electrolyte compatibility specific surface area

关 键 词:中间相炭微球 锂离子电池 负极材料 复合材料 

分 类 号:TM91[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象