检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:韩立芳[1] 赵中义[1] HAN Lifang;ZHAO Zhongyi(Energy Center of Jiuquan Iron&Steel Group Co.,Ltd.,Jiayuguan 735100,China)
机构地区:[1]酒泉钢铁(集团)有限责任公司能源中心,甘肃嘉峪关735100
出 处:《热力发电》2020年第4期144-149,共6页Thermal Power Generation
基 金:国家自然科学基金联合基金资助项目(U1560203);国家自然科学基金项目(51274031);酒钢集团能源中心课题(2016-J3-077-DI)。
摘 要:燃煤热值是评价燃煤品质的重要指标之一,快速准确地预测燃煤热值对燃煤锅炉的燃烧优化以及经济运行至关重要。本文提出一种基于极限学习机(ELM)的燃煤热值预测方法,选取煤的水分、灰分、挥发分和固定碳4种工业分析成分作为模型的输入,以煤质高位发热量作为模型输出,建立基于ELM的燃煤热值预测模型,并对107种不同煤进行预测分析。结果表明:ELM模型具有良好的预测能力,模型的拟合度R2在0.98以上,煤质高位发热量预测值的均方根误差为0.29 MJ/kg;与经典线性模型以及BP神经网络模型相比,ELM模型能更准确地预测燃煤热值,且其运算速度快,具有很好的现场应用价值。Calorific value of coal is one of the important indexes to evaluate the quality of coal. Accurate and rapid prediction of calorific value for coal is very important for the optimal combustion and economic operation of coalfired boilers in power plants. In the study, a prediction method of coal calorific value based on the extreme learning machine(ELM) algorithm is proposed. Four proximate analysis components, namely the moisture content, the ash content, the volatile matter content and the fixed carbon content, are selected as input of the model, and the gross calorific value of coal is taken as output of the model. A prediction model of coal calorific value based on the ELM is established, and 107 kinds of coal are analyzed. The prediction results of the model show that, the ELM model has good prediction ability. The goodness of fit of the model(R^2) is above 0.98, and the root mean square error of prediction(RMSEP) of the calorific value is 0.29 MJ/kg. Compared with the typical linear model and the BP neural network model, the ELM model can predict the calorific value of coal more accurately, and its calculation speed is faster, so it has good field application value.
关 键 词:燃煤热值 热值预测 工业分析 极限学习机 预测模型 高位发热量
分 类 号:TK16[动力工程及工程热物理—热能工程] TK212
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249