基于改进语音特征与极限学习机的语音端点检测  被引量:1

Voice activity detection based on improved speech features and extreme learning machine

在线阅读下载全文

作  者:罗庆 包亚萍[1] 俞强[1] LUO Qing;BAO Ya-ping;YU Qiang(Department of Computer Science and Technology,Nanjing Tech University,Nanjing 211816,China)

机构地区:[1]南京工业大学计算机科学与技术系,江苏南京211816

出  处:《微电子学与计算机》2020年第3期37-41,共5页Microelectronics & Computer

摘  要:语音端点检测(Voice Activity Detection,VAD),是指在给定语音信号帧中判别语音是否存在,鲁棒的VAD有助于提高语音应用的自动化效率,例如语音增强、说话人识别、助听器等.为了提高低信噪比下语音端点检测的精度以及效率,提出了一种新的语音特征-低频消噪能量(Low Frequency De-noising Energy,LFDE),将其应用于VAD中,并利用LFDE与现有的声学特征(梅尔频率倒谱参数、共振峰频率)结合训练极限学习机(Extreme Learning Machine,ELM)分类器.仿真实验发现,端点检测的精度与效率都有提高.Voice Activity Detection(VAD)refers to the determination of the existence of speech in a given speech signal frame.Robust VAD helps to improve the automation efficiency of speech applications,such as speech enhancement,speaker recognition,and hearing aids and so on.In order to improve the accuracy and efficiency of voice activity detection under low SNR,a new speech feature-Low Frequency De-noising Energy(LFDE)is proposed,which is applied to VAD and utilizes LFDE and existing acoustic features(Mel frequency cepstrum parameters,formants Frequency)combined with the Extreme Learning Machine(ELM)classifier.Simulation experiments show that the accuracy and efficiency of voice activity detection are improved.

关 键 词:低频消噪能量 梅尔倒谱参数 共振峰频率 极限学习机 

分 类 号:TN912[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象