检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈国艳 CHEN Guo-yan(College of Science,Dalian Maritime University,Liaoning Dalian 116026,China)
出 处:《计算机仿真》2020年第3期359-363,共5页Computer Simulation
基 金:2018年教育部第一批产学合作协同育人项目(201801039027);2018年大连海事大学本科教改项目(2018Y79);2018年大连海事大学本科生在线开放课程项目(J20180129)。
摘 要:传统离焦图像多视角模糊特征自动补偿方法存在着图像信息丢失率大、图像补偿完整度低的弊端,为了解决上述问题,提出离焦图像多视角模糊特征自动补偿方法研究。为了得到更好的模糊特征补偿效果,对离焦图像形成过程进行分析,以此为基础,对离焦图像多视角模糊模型进行构建,以构建的离焦图像多视角模糊模型为工具,采用聚类算法对离焦图像模糊特征进行相应的提取,以提取的离焦图像多视角模糊特征为基础,采用补偿算法对离焦图像多视角模糊特征进行处理,实现了离焦图像多视角模糊特征的自动补偿。通过仿真对比实验得到,与现有的三种离焦图像多视角模糊特征自动补偿方法相比较,提出的离焦图像多视角模糊特征自动补偿方法极大的降低了图像信息丢失率,提升了图像补偿完整度,充分说明提出的离焦图像多视角模糊特征自动补偿方法具备更好的补偿性能。Due to large image information loss rate and low image compensation integrity in traditional method,this article presented an automatic compensation method for multi-view fuzzy feature of defocused image.In order to get better effect of fuzzy feature compensation,the formation process of defocused image was analyzed.On this basis,the multi-view fuzzy model of defocused image was constructed.Based on the model,the fuzzy features of defocused image were extracted by clustering algorithm,and then the compensation algorithm was used to process multi-view fuzzy features of defocused image.Thus,automatic compensation of multi-view fuzzy feature of defocused image was realized.Simulation results show that,compared with the existing automatic compensation methods,the proposed method greatly reduces the image information loss rate and improves the integrity of image compensation,so that the proposed method has better compensation performance.
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62