List Vertex-arboricity of Planar Graphs without Intersecting 5-cycles  被引量:1

在线阅读下载全文

作  者:Wei-fan WANG Li HUANG Min CHEN 

机构地区:[1]Department of Mathematics,Zhejiang Normal University,Jinhua 321004,China

出  处:《Acta Mathematicae Applicatae Sinica》2020年第2期439-447,共9页应用数学学报(英文版)

基  金:supported by the National Natural Science Foundation of China(Nos.11971437,11771402);the Natural Science Foundation of Zhejiang Province(No.LY19A010015).

摘  要:The vertex-arboricity a(G)of a graph G is the minimum number of colors required for a vertex coloring of G such that no cycle is monochromatic.The list vertex-arboricity al(G)is the list-coloring version of this concept.In this paper,we prove that every planar graph G without intersecting 5-cycles has al(G)≤2.This extends a result by Raspaud and Wang[On the vertex-arboricity of planar graphs,European J.Combin.29(2008),1064-1075]that every planar graph G without 5-cycles has a(G)≤2.

关 键 词:planar GRAPHS LIST vertex-arboricity intersecting cycles MONOCHROMATIC CYCLE 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象