求解置换流水车间调度的离散狼群算法  被引量:10

Discrete Wolf Pack Algorithm for Permutation Flow Shop Scheduling Problem

在线阅读下载全文

作  者:谢锐强 张惠珍[1] XIE Rui-qiang;ZHANG Hui-zhen(Business School,University of Shanghai for Science and Technology,Shanghai 200093,China)

机构地区:[1]上海理工大学管理学院,上海200093

出  处:《控制工程》2020年第2期288-296,共9页Control Engineering of China

基  金:国家自然科学基金资助项目(71401106);教育部人文社会科学基金项目(16YJA630037)。

摘  要:针对置换流水车间调度问题的具体特性,模拟自然界中狼群捕猎行为设计了一种离散狼群算法。采用基于工件序列的编码方式,反向学习初始化种群提高算法收敛速度。对原始狼群算法中游走行为、召唤行为、围攻行为进行重新设计,使得算法不易陷入局部最优。同时,运用Taguchi试验设计方法对算法参数设置进行灵敏度分析,并确定出最优的参数组合。最后,运用离散狼群算法对Car、Reeves以及Taillard标准测试集进行仿真测试,与其他智能优化算法进行比较,验证了所提出算法的可行性,为求解置换流水车间调度问题提供了更加有效的一种方法。A discrete wolf pack algorithm is proposed to simulate the specific characteristics of the permutation flow shop scheduling problem and simulate the hunting behavior of wolves in nature.Using the coding method based on the workpiece sequence,the opposition learning initializes the population to improve the convergence speed of the algorithm.The redesign of the wandering behavior,summoning behavior and siege behavior in the original wolf group algorithm makes the algorithm not easy to fall into local optimum.At the same time,the Taguchi experimental design method is used to analyze the sensitivity of the algorithm parameter settings,and the optimal parameter combination is determined.Finally,the discrete wolf pack algorithm is used to simulate and test the standard test sets of Car,Reeves and Taillard.Compared with other intelligent optimization algorithms,the feasibility of the proposed algorithm is verified.It provides a more effective method for solving the permutation flow shop scheduling problem.

关 键 词:离散狼群算法 群智能优化算法 置换流水车间调度 最小化最大完工时间 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象