调和算子多项式广义次谱的显式上界  

Explicit Upper Bound of Generalized Secondary Spectrum for Polynomials of Harmonic Operator

在线阅读下载全文

作  者:黄振明[1] HUANG Zhenming(Department of Mathematics and Physics,Suzhou Vocational University,Suzhou 215104,China)

机构地区:[1]苏州市职业大学数理部,江苏苏州215104

出  处:《海南师范大学学报(自然科学版)》2020年第1期70-75,共6页Journal of Hainan Normal University(Natural Science)

摘  要:对调和算子多项式的广义离散谱进行估计,运用偏微分方程理论和变分法技巧,发现主特征函数与主谱、算子阶数之间的关系,证明主特征函数满足的恒等式,推得所选择的试验函数与主谱、空间维数间的关系,最终获得用主谱来估计次谱上界的一个万有不等式,且估计系数与区域的度量无关。To estimate generalized discrete spectra for polynomials of harmonic operator,the theory of partial differential equations and the calculus of variations were used.The relationship existed among the principal eigenfunction,the principal spectrum and the order of the operator was found.The inequality satisfied by the principal eigenfunction was proved.The relationship among the selected trial functions,the principal spectrum and the space dimension was inferred.At last,a universal inequality estimating the upper bound of the secondary spectrum by the principal one was obtained.Moreover,the estimated coefficients are irrelevant to the measure of the domain.

关 键 词:调和算子多项式 广义次谱 算子谱理论 主特征函数 万有不等式 

分 类 号:O175.9[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象