检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赖永炫 张璐 杨帆 卢卫 王田[5] LAI Yong-Xuan;ZHANG Lu;YANG Fan;LU Wei;WANG Tian(Department of Software Engineering,School of Information Science and Technology,Xiamen University,Xiamen 361005,China;Shenzhen Research Institute,Xiamen University,Shenzhen 518057,China;Department of Automation,College of Aerospace Engineering,Xiamen University,Xiamen 361005,China;Department of Computer Science,School of Information,Renmin University of China,Beijing 100872,China;School of Computer Science and Technology,Huaqiao University,Xiamen 361021,China)
机构地区:[1](厦门大学信息科学与技术学院软件工程系,福建厦门361005 [2](厦门大学深圳研究院,广东深圳518057 [3]厦门大学航空航天学院自动化系,福建厦门361005 [4]中国人民大学信息学院计算机系,北京100872 [5]华侨大学计算机科学与技术学院,福建厦门361021
出 处:《软件学报》2020年第3期648-662,共15页Journal of Software
基 金:国家自然科学基金(61672441,61872154);深圳市基础研究计划(JCYJ20170818141325209);福建省自然科学基金(2018J01097)。
摘 要:公交车辆到站时间的预测是公交调度辅助决策系统的重要依据,可帮助调度员及时发现晚点车辆,并做出合理的调度决策.然而,公交到站时间受交通拥堵、天气、站点停留和站间行驶时长不固定等因素的影响,是一个时空依赖环境下的预测问题,颇具挑战性.提出一种基于深度神经网络的公交到站时间预测算法STPM,算法采用时空组件、属性组件和融合组件预测公交车辆从起点站到终点站的总时长.其中,利用时空组件学习事物的时间依赖性与空间相关性.利用属性组件学习事物外部因素的影响.利用融合组件融合时空组件与属性组件的输出,预测最终结果.实验结果表明,STPM能够很好地结合卷积神经网络与循环神经网络模型的优势,学习关键的时间特征与空间特征,在公交到站时间预测的误差百分比和准确率上的表现均优于已有的预测方法.Bus arrival time prediction is an important basis for the decision-making assistant system of bus dispatching.It helps dispatchers to find late vehicles in time and make reasonable dispatching decisions.However,bus arrival time is influenced by traffic congestion,weather,and variable time when stopping at stations or travelling duration between stations.It is a spatio-temporal dependence problem,which is quite challenging.This study proposes a new algorithm called STPM for bus arrival time prediction based on deep neural network.The algorithm uses space-time components,attribute components and fusion components to predict the total bus arrival time from the starting point to the terminal.In this algorithm,time-dependence and space-time components are used to learn the internal spatio-temporal dependence.It uses attribute components to learn the influence of external factors,uses fusion components to fuse the output of temporal and spatial components,as well as attribute components,to predict the final results.Experimental results show that STPM can combine the advantages of convolutional neural network and recurrent neural network model to learn the key temporal and spatial features.The proposed algorithm outperforms existing methods in terms of the error percentage and accuracy of bus arrival time prediction.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222