检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王新海[1] 高阳[1] WANG Xinhai;GAO Yang(Provincial Key Laboratory of Numerical Control Technology and Application,School of Mechanical and Material Engineering,Jiujiang University,Jiujiang Jiangxi 332005,China)
机构地区:[1]九江学院机械与材料工程学院数控技术与应用省重点实验室,江西九江332005
出 处:《机床与液压》2020年第7期179-183,178,共6页Machine Tool & Hydraulics
基 金:江西省青年科学基金资助项目(2015BAB216019)。
摘 要:鉴于数控车床刀具在机械加工系统中占有重要的地位,故数控车床刀具磨损故障的在线检测与识别具有重要意义。以华中数控车床为研究对象,提出了以平均经验模态分解(EEMD)、混沌粒子群(CPSO)以及核极限学习机(ELM)等方法对车床刀具磨损故障进行诊断。介绍了EEMD、CPSO以及ELM的基本原理和过程;对采集得到的刀具磨损信号进行前期预处理,经EEMD分解后得到IMF分量,以峭度、峰值、均方根值作为一种选取标准,选择包含较多故障信息的几个IMF进行信号重组并计算;将计算结果组成特征向量输入CPSO-ELM、SVM以及BP神经网络等分类器进行故障识别和对比。实验结果表明:对比传统的BP神经网络和SVM分类器,CPSO-ELM分类器具有快速、精确、有效的识别特性,能够有效检测和识别刀具磨损故障。In view of the important position of CNC lathe cutter in machining system,on-line detection and recognition of tool wear fault of CNC lathe are of great significance.Taking the Central China CNC lathe as the research object,the methods of means of average empirical modal decomposition(EEMD),chaotic particle swarm optimization(CPSO)and nuclear limit learning machine(ELM)were proposed to diagnose the lathe tool wear fault.The basic principles and processes of EEMD,CPSO and ELM were introduced.The acquired tool wear signals were pre-processed,and the IMF component was obtained after EEMD decomposition.Taking the Kurtosis,peak value and root-mean-square value as a selection criterion,several IMF contained more fault information were selected for signal recombination and calculation.After composing the feature vectors,the calculation results were input into CPSO-ELM,SVM and BP neural network and other classifiers for fault identification and comparison.The experimental results show that compared with the traditional BP neural network and SVM classifier,the CPSO-ELM classifier has the characteristics of fast,accurate and effective identification,and can effectively detect and identify tool wear faults.
分 类 号:TH16[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222