检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:LI Yangyang CHEN Jiacun AI Shaoshui SHI Hui
机构地区:[1]State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,Institute of Soil and Water Conservation,Northwest A&F University,Yangling 712100,China [2]Institute of Soil and Water Conservation,Chinese Academy of Sciences,Yangling 712100,China [3]School of Environmental and Municipal Engineering,Xi'an University of Arc
出 处:《Journal of Arid Land》2020年第2期267-282,共16页干旱区科学(英文版)
基 金:The study was funded by the National Natural Science Foundation of China(41571130082,41371507).
摘 要:Regulation of leaf gas exchange plays an important role in the survival of trees and shrubs under future climate change. However, the responses of leaf water potential and gas exchange of shrubs in semi-arid areas to the precipitation alteration are not clear. Here, we conducted a manipulated experiment with three levels of precipitation, i.e., a control with ambient precipitation, 50% above ambient precipitation(irrigation treatment), and 50% below ambient precipitation(drought treatment), with two common shrubs, Salix psammophila C. Wang & C. Y. Yang(isohydric plant, maintaining a constant leaf water potential by stomatal regulation) and Caragana korshinskii Kom.(anisohydric plant, having more variable leaf water potential), on the Chinese Loess Plateau in 2014 and 2015. We measured the seasonal variations of predawn and midday leaf water potential(Ψpd and Ψmd), two parameters of gas exchange, i.e., light-saturated assimilation(An) and stomatal conductance(gs), and other foliar and canopy traits. The isohydric S. psammophila had a similar An and a higher gs than the anisohydric C. korshinskii under drought treatment in 2015, inconsistent with the view that photosynthetic capacity of anisohydric plants is higher than isohydric plants under severe drought. The two shrubs differently responded to precipitation manipulation. Ψpd, An and gs were higher under irrigation treatment than control for S. psammophila, and these three variables and Ψmd were significantly higher under irrigation treatment and lower under drought treatment than control for C. korshinskii. Leaf water potential and gas exchange responded to manipulated precipitation more strongly for C. korshinskii than for S. psammophila. However, precipitation manipulation did not alter the sensitivity of leaf gas exchange to vapor-pressure deficit and soil moisture in these two shrubs. Acclimation to long-term changes in soil moisture in these two shrubs was primarily attributed to the changes in leaf or canopy structure rather than leaf gas exchange. Th
关 键 词:DROUGHT IRRIGATION LEAF water potential gas exchange ACCLIMATION
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112