检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:严春满[1] 陈佳辉 马芸婷 郝有菲 张迪 Yan Chunman;Chen Jiahui;Ma Yunting;Hao Youfei;Zhang Di(College of Physics and Electronic Engineering,Northwest Normal University,Lanzhou Gansu 730070 China)
机构地区:[1]西北师范大学物理与电子工程学院,甘肃兰州730070
出 处:《激光与光电子学进展》2020年第2期162-169,共8页Laser & Optoelectronics Progress
基 金:国家自然科学基金(61741119,61367005);甘肃省自然科学基金(17JR5RA074,17JR5RA078)。
摘 要:针对QR(Quick Response)码在光照变化、污染、破损等情况下识别率低的问题,提出一种多块局部二值模式(MB-LBP)结合改进灰狼优化算法(GWO)优化支持向量机(SVM)的QR码识别算法。首先采用提升小波变换分离出图像的高低频分量,将二级低频和水平高频分量分成互不重叠的子块,分别提取每个子块的MB-LBP特征并融合;然后运用主成分分析(PCA)对样本集进行特征降维;最后采用SVM算法对QR码数据建立分类模型。为进一步提高分类精度,在标准GWO基础上引入基于对数函数的非线性收敛因子提升其寻优性能,并使用改进GWO优化SVM模型。实验根据不同高低频结合方式、SVM优化算法对识别性能进行了测试,结果表明本文方法在识别速度和分类精度方面都有明显提升,具有良好的稳健性。To address the problem of low recognition rate of QR(Quick Response)codes under changes in illumination,pollution,and damage,a QR-code recognition algorithm based on multiblock local binary patterns(MB-LBP)combined with an improved grey wolf optimization(GWO)algorithm for optimizing a support vector machine(SVM)is proposed.Firstly,the lifting wavelet transform is used to separate the high-and low-frequency components of the image,while the second-level low-frequency and horizontal high-frequency components are divided into nonoverlapping sub-blocks.The MB-LBP features of each sub-block are separately extracted and fused.Then,principal component analysis is applied to reducing the dimension of the sample set.Finally,the classification model of the QR-code data is established using the SVM algorithm.To further improve the classification accuracy,the nonlinear convergence factor based on a logarithmic function is introduced to improve the optimization performance based on the standard GWO;the improved GWO is used to optimize the SVM model.The recognition performance is tested according to different combination modes of high and low frequencies and the SVM optimization algorithm.The experimental results show that the proposed algorithm significantly improves the recognition rate and classification accuracy,and it is highly robust.
关 键 词:图像处理 QR码识别 改进灰狼优化算法 多块局部二值模式 提升小波变换
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33