考虑叶片径向和垂直于壁面方向导热的涡轮叶片对流冷却模型研究  被引量:1

Investigation on a Convective Turbine Blade Cooling Model Considering Heat Conductivity Both in Radial and Normal Direction to Blade Wall

在线阅读下载全文

作  者:王伯鑫 赵巍[1,2] 隋秀明 周庆晖[1,2] 赵庆军 WANG Bai-xin;ZHAO Wei;SUI Xiu-ming;ZHOU Qing-hui;ZHAO Qing-jun(Institute of Engineering Thermophysics,Chinese Academy of Sciences,Beijing 100190,China;School of Aeronautics and Astronautics,University of Chinese Academy of Sciences,Beijing 100049,China;Key Laboratory of Light-Duty Gas-Turbine,Institute of Engineering Thermophysics,Chinese Academy of Sciences,Beijing 100190,China)

机构地区:[1]中国科学院工程热物理研究所,北京100190 [2]中国科学院大学航空宇航学院,北京100049 [3]中国科学院工程热物理研究所,轻型动力重点实验室,北京100190

出  处:《推进技术》2020年第2期390-397,共8页Journal of Propulsion Technology

基  金:国家重点研发计划(2016YFB0901402);国家自然科学基金(51776198)。

摘  要:为了提高涡轮叶片对流冷却模型预测精度,提出了一种在叶片固壁内同时考虑叶片径向和垂直于壁面方向(法向)导热的二维对流冷却模型。该模型在弦长方向划分多个元素,忽略元素内弦长方向叶片温度变化,在元素内的径向和法向建立二维导热方程作为叶片固壁温度场的控制方程,其边界条件包括叶表燃气绝热温度、燃气侧对流换热系数和叶片叶根、叶顶热流密度等。给出了该模型二维导热方程和边界条件的差分求解方法。以E^3涡轮高压导叶为例,将模型与CFD计算的叶片外壁面温度分布进行了对比。结果表明,该模型在给定冷气量下预测的叶片温度分布变化趋势与CFD相近,最大温度误差不超过6.5%,计算时间与CFD相比缩短了95%,能够快速、准确预测涡轮对流冷却叶片的冷气需求量。A two-dimensional convective turbine blade cooling model is presented,considering the heat conductivity both in the radial direction and in the direction normal to the blade wall for improved prediction accuracy. This model divides the blade wall into small elements in the chord wise direction,neglecting the temperature variation in that direction. In each element,2D heat conductivity equation is established in the radial direction and in the direction normal to the blade wall as governing equation for the temperature field of the blade solid wall. Boundary conditions for the equation include the adiabatic temperature and heat transfer coefficient of the gas-side blade wall,and the heat flux through the blade tip and root. The 2D heat conductivity equations with conditions for the model and the corresponding differential solving method are all provided. This model is then applied to a high-pressure turbine vane of E^3. The comparison between the gas-side wall temperature results of the model and CFD is conducted. It shows that with the given coolant mass,the blade gas-side wall temperature distribution predicted by the model is similar to that by the CFD and the maximum error is less than 6.5% with a reduction of 95% in simulation time. It is proved that this model can be employed to obtain the turbine blade convective coolant flow requirement quickly and accurately.

关 键 词:涡轮 叶片 对流冷却 热传导 温度分布 计算模型 

分 类 号:V231.1[航空宇航科学与技术—航空宇航推进理论与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象