检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李瑞君 武利生 Li Ruijun;Wu Lisheng(College of Mechanical and Vehicle Engineering,Taiyuan University of Technology,Taiyuan 030024,China)
机构地区:[1]太原理工大学机械与运载工程学院,太原030024
出 处:《煤矿机械》2020年第4期156-158,共3页Coal Mine Machinery
基 金:国家自然科学基金项目(51675364)。
摘 要:煤矿机械齿轮传动系统在低速重载等恶劣工况下极易发生故障,齿轮箱部分尤为突出。因此展开对恶劣工况下的齿轮箱故障诊断研究具有重要的意义。以齿轮箱中齿轮为研究对象,通过提取与齿轮箱振动相关的故障特征,经过神经网络的学习训练实现对齿轮箱故障的分类。经检验,该诊断神经网络对齿轮箱故障有很高的辨识度。Coal mine machinery gear transmission system is prone to failure under severe conditions such as low speed and heavy load,especially in the gear box.Therefore,it is of great significance to carry out research on gearbox fault diagnosis under severe working conditions.Taking the gears in the gearbox as the research object,the fault features in the gearbox were extracted by extracting the fault characteristics related to the vibration of the gearbox,and the faults in the gearbox were classified through learning and training of the neural network.Through inspection,the diagnostic neural network has a high degree of recognition for gearbox failures.
分 类 号:TH132.41[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62