检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘子健 刘建成 LIU Zi-jian;LIU Jian-cheng(School of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China)
机构地区:[1]西北师范大学数学与统计学院,兰州730070
出 处:《西南师范大学学报(自然科学版)》2020年第4期36-40,共5页Journal of Southwest China Normal University(Natural Science Edition)
基 金:国家自然科学基金项目(11761061).
摘 要:加权黎曼流形(M^n+1,g,e^-fdv)在黎曼流形(M^n+1,g)上赋予一个加权体积dvf=e^-fdv,其中f是M^n+1上的光滑实值函数,dv为M^n+1的体积元,记Σn为加权黎曼流形(M^n+1,g,e^-fdv)中具有常加权平均曲率Hf的紧致无边超曲面,在截面曲率Sec≥c的条件下,研究了超曲面上加权稳定算子Jf的第一特征值问题,运用了不等式(a+b)^2≥a^21+k-b^2k等号成立当且仅当b=-k1+ka,其中任意的a,b∈R和k>-1,得到了超曲面上第一稳定特征值的一个上界.当f为常数时,加权黎曼流形也就回到了通常的黎曼流形,此时也得到了稳定算子J的第一非零特征值的上界,进而从这个上界来讨论超曲面的稳定性.In this paper,it's gived a weighted volume dvf=e^-fdv for weighted Riemannian manifold(M^n+1,g,e^-f dv)on Riemannian manifold(M^n+1,g),where f is the smooth and real function on M^n+1,dv is volume of M^n+1,Σn is a compact infinitesimal hypersurface on weighted Riemann manifold(M^n+1,g,e^-f dv)with constant weighted mean curvature Hf.Under the condition of section curvature Sec≥c,the first eigenvalue problem of the weighted stability operator Jf on the hypersurface is studied.The equality of inequality(a+b)^2≥a^21+k-b^2kis established if and only if b=-k1+ka,where any a,b∈R and k>-1,upper bound on the first stable eigenvalue on the hypersurface is obtained.When f is a constant,the weighted Riemannian manifold returns to the usual Riemannian manifold,and the upper bound of the first nonzero Eigenvalue of the stable operator J is obtainedan.Furthermore,the stability of the hypersurface can be discussed from the obtained upper bound.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.252.20