检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:龚风云 王凯[1] 樊旭成[3] 杨建东 GONG Fengyun;WANG Kai;FAN Xucheng;YANG Jiandong(Collegeof Medical Engineering and Technology,Xinjiang Medical University,Urumqi 830011,China;School of Statistical and Data Science,Xinjiang University of Finan-ce and Economics,Urumqi 830012,China;Infectious Diseases Control and Prevention Department,Center for Disease Control and Prevention of Urumqi, Urumqi 830026,China;Tuberculosis Control and Prevention Department,Center for Disease Control and Prevention of Urumqi, Urumqi 830026,China)
机构地区:[1]新疆医科大学医学工程技术学院,乌鲁木齐830011 [2]新疆财经大学统计与数据科学学院 [3]乌鲁木齐市疾病预防控制中心传染病防治科 [4]乌鲁木齐市疾病预防控制中心结核病防治科
出 处:《公共卫生与预防医学》2020年第2期4-8,共5页Journal of Public Health and Preventive Medicine
基 金:国家自然科学基金资助(2020.01-2023.12,11961071)。
摘 要:目的分析气象因素对乌鲁木齐市流感样病例(influenza-like illness,ILI)例数的影响,建立ARIMAX(autoregressive integrated moving average model-X)模型对ILI例数进行短期预测,为乌鲁木齐市流感的预防与控制提供理论依据。方法利用乌鲁木齐市2015年1月至2017年9月的ILI例数和同期气象数据,建立ARIMAX模型,预测乌鲁木齐市2017年10月至2018年3月的ILI病例数,并与实际ILI例数进行比较。结果2015年1月—2017年9月发病数建立了ARIMA(0,1,1)(1,1,0)12模型,AIC=200.09;通过残差序列互相关函数(CCF)得出月平均相对湿度与ILI例数之间存在正相关关系,月日照时数与ILI例数之间存在负相关关系。将月平均相对湿度和月日照时数作为影响变量,建立ARIMAX模型,其中,纳入滞后0阶月日照时数的ARIMAX模型的AIC最小(AIC=197.63),且模型各参数差异均具有统计学意义。与一元时间序列ARIMA模型相比,拟合的平均绝对百分误差(MAPE)降低1.3687%,预测的MAPE降低5.25%,预测精度提高。结论本研究建立的带有气象因素的ARIMAX模型能较好预测短时间内ILI病例数发病趋势,为流感监测和预防控制提供依据。Objective To analyze the influence of meteorological factors on the number of influenza-like illness(ILI)cases in Urumqi,and establish an ARIMAX(autoregressive integrated moving average model-X)model to make short-term prediction of the number of ILI cases,so as to provide theoretical basis for the prevention and control of influenza in Urumqi.Methods The number of ILI cases in Urumqi from January 2015 to September 2017 and meteorological data of the same period were used to establish ARIMAX model and predict the number of ILI cases in Urumqi from October 2017 to March 2018.Results The ARIMA(0,1,1)(1,1,0)12 model was established from January 2015 to September 2017,AIC=200.09.According to residual correlation function(CCF),there was a positive correlation between monthly average relative humidity and ILI cases,and a negative correlation between monthly sunshine hours and ILI cases.The average monthly relative humidity and monthly sunshine hours were taken as influencing variables to establish the ARIMAX model.Among them,the ARIMAX model incorporating the lagging order of 0 of monthly sunshine hours had the smallest AIC(AIC=197.63),and all parameters of the model were statistically significant.Compared with the univariate time series ARIMA model,the mean absolute percentage error(MAPE)of fitting was reduced by 1.3687%,the predicted MAPE was reduced by 5.25%,and the prediction accuracy was improved.Conclusion The ARIMAX model with meteorological factors established in this study can better predict the incidence trend of ILI cases in a short time,providing evidence for influenza surveillance and prevention and control.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.143