检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:YanHu Mu MingTang Chai GuoYu Li Wei Ma Fei Wang YaPeng Cao
机构地区:[1]State Key Laboratory of Frozen Soil Engineering,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou,Gansu 730000,China [2]University of Chinese Academy of Sciences,Beijing 100049,China
出 处:《Research in Cold and Arid Regions》2020年第2期59-70,共12页寒旱区科学(英文版)
基 金:supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA2003020102);the China Postdoctoral Science Foundation(No.2019M653797);the National Natural Science Foundation of China(No.41630636 and No.41772325);the Major Program of the Bureau of International Cooperation,the Chinese Academy of Sciences(131B62KYSB20170012).
摘 要:Buried pipelines are widely used for transporting oil in remote cold regions. However, the warm oil can induce considerable thermal influence on the surrounding frozen soils and result in severe maintenance problems. This paper presents a case study of the thermal influence of ponding and buried warm-oil pipelines on permafrost along the China-Russia Crude Oil Pipeline(CRCOP) in Northeast China. Since its operation in 2011, the operation of the warm-oil pipelines has led to rapid warming and thawing of the surrounding permafrost and development of sizable ponding along the pipeline route,which, in return, exacerbates the permafrost degradation. A field study was conducted along a 400-km long segment of the CRCOP in permafrost regions of Northeast China to collect the location and size information of ponding. A two-dimensional heat transfer model coupled with phase change was established to analyze the thermal influence of ponding and the operation of warm-oil pipelines on the surrounding permafrost. In-situ measured ground temperatures from a monitoring site were obtained to validate the numerical model. The simulation results show that ponding accelerates the development of the thaw bulb around the pipeline. The maximum thaw depth below the pipeline increases from 4 m for the case without ponding to 9 m for the case with ponding after 50 years of operation, and ponding directly above the pipe induces the maximum thaw depth. Engineering measures should be adopted to control the size or even eliminate surface water-rich ponding for the long-term performance of buried warm-oil pipelines.
关 键 词:PONDING heat transfer modeling oil PIPELINE PERMAFROST thaw DEPTH
分 类 号:TE973[石油与天然气工程—石油机械设备]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38