基于舌象色谱比较分析的舌诊方法  被引量:15

Tongue Diagnosis Method Based on Comparative Analysis of Tongue Image Chromatography

在线阅读下载全文

作  者:尚文文 王亚伟[2] 薛双双 彭光威 韩豪 徐媛媛[2] Shang Wenwen;Wang Yawei;Xue Shuangshuang;Peng Guangwei;Han Hao;Xu Yuanyuan(School of Mechanical Engineering,Jiangsu University,Zhenjiang,Jiangsu 212013,China;Faculty of Science,Jiangsu University,Zhenjiang,Jiangsu 212013,China)

机构地区:[1]江苏大学机械工程学院,江苏镇江212013 [2]江苏大学理学院,江苏镇江212013

出  处:《激光与光电子学进展》2020年第3期186-194,共9页Laser & Optoelectronics Progress

基  金:国家自然科学基金(11604127,11874184)。

摘  要:传统的舌诊信息主要由临床主观判断获取,缺乏客观、定量的度量手段,而且被诊人员自我状态的复杂性也会影响诊断结果的准确性。对此,提出一种基于自我舌象色谱比较分析的诊断方法。利用图像处理技术对健康舌象的正片与病变舌象的彩色负片进行叠加,选取舌象的信息敏感区域,同时采集数据,借助RGB和CIE Lab色彩模型之间的转换关系,得到离散的色谱分布特征,并结合定量参数范围进行健康状态的诊断。仿真与实验分析验证了该方法的可行性和正确性。该方法能够有效地改善舌象诊断效果,有利于推动中医舌诊技术的进一步发展。Traditional tongue diagnosis information is mainly obtained by clinical subjective judgment,lacking objective and quantitative measures.Moreover,complexity of the patient self-state also affects accuracy of the diagnostic results.In this regard,a diagnostic method under the comparative analysis of self-tongue image chromatography is proposed.That is,use image processing techniques to overlay positive films of healthy tongue images and colored negative films of unhealthy tongue images,select the information sensitive area of the tongue images,collect the data,use the conversion relationship between RGB and CIE Lab color model,obtain the discrete chromatography distribution characteristics,and combine the quantitative parameter range to diagnose the health state.Through simulation and experimental analysis,the feasibility and correctness of the method are verified.The method proposed can effectively improve the tongue image diagnosis effect and is useful for the further development of tongue diagnosis in traditional Chinese medicine.

关 键 词:医用光学 比较研究 色谱分析 合成片 诊断方法 

分 类 号:O432[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象