Toward accurate measurement of property-dependent galaxy clustering I.Comparison of the Vmax method and the“shuffled”method  

在线阅读下载全文

作  者:Lei Yang Yi-Peng Jing Zhi-Gang Li Xiao-Hu Yang 

机构地区:[1]Department of Astronomy,School of Physics and Astronomy,Shanghai Jiao Tong University,Shanghai 200240,China [2]Tsung-Dao Lee Institute,and Shanghai Key Laboratory for Particle Physics and Cosmology,Shanghai Jiao Tong University,Shanghai 200240,China [3]College of Physics and Electronic Engineering,Nanyang Normal University,Nanyang 473061,China

出  处:《Research in Astronomy and Astrophysics》2020年第4期87-98,共12页天文和天体物理学研究(英文版)

基  金:supported by the 973Program(Nos.2015CB857002 and 2015CB857003);the National Natural Science Foundation of China(Grant Nos.11533006,11621303,11833005,11890691 and 11890692)。

摘  要:Galaxy clustering provides insightful clues to our understanding of galaxy formation and evolution,as well as the universe.The redshift assignment for the random sample is one of the key steps to accurately measure galaxy clustering.In this paper,by virtue of the mock galaxy catalogs,we investigate the effect of two redshift assignment methods on the measurement of galaxy two-point correlation functions(hereafter 2 PCFs),the Vmax method and the"shuffled"method.We have found that the shuffled method significantly underestimates both of the projected 2 PCFs and the two-dimensional 2 PCFs in redshift space,while the Vmax method does not show any notable bias on the 2 PCFs for volume-limited samples.For fluxlimited samples,the bias produced by the Vmax method is less than half of the shuffled method on large scales.Therefore,we strongly recommend the Vmax method to assign redshifts to random samples in the future galaxy clustering analysis.

关 键 词:galaxies:statistics galaxies:galaxy formation and evolution large-scale structure of UNIVERSE 

分 类 号:P15[天文地球—天文学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象